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Electromagnetic viscosity in complex structured environments:
From blackbody to quantum friction
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We investigate the steady-state nonconservative open-system dynamics of an atom in a generic complex
structured electromagnetic environment at finite temperature T . In such systems, when the atom moves along a
translation-invariant axis of the environment, a frictional force acts on the particle. The effective viscosity due to
friction results from the nonequilibrium interaction with the fluctuating (quantum) electromagnetic field, which
effectively sets a privileged reference frame. We study the impact of both quantum and thermal fluctuations on
the interaction, highlighting how they induce qualitatively different types of viscosity. To this end, we develop a
self-consistent non-Markovian description that contains quantum and blackbody friction as special cases. In
particular, we show how the interplay between the nonequilibrium dynamics, the quantum and the thermal
properties of the radiation, as well as the confinement of light at the vacuum-material interface is responsible
for several intriguing features. Our analysis is relevant for an experimental test of noncontact friction and the
resulting electromagnetic viscosity.
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I. INTRODUCTION

Breaking the conditions for Lorentz invariance in open
quantum systems leads to a number of intriguing effects,
regardless of the complexity of the system’s configuration
[1]. For example, in the Fulling-Davis-DeWitt-Unruh effect
[2–5], an atom moving in the quantum vacuum perceives its
surrounding as a thermal field when it is uniformly acceler-
ated. When its acceleration is not uniform, as in the dynamical
Casimir effect, radiation is emitted [6,7]. In such situations, an
external agent is required in order to sustain the motion and to
work against a drag force acting on the particle, which tends
to restore the inertial dynamics [8,9]. As noted by Einstein
and Hopf for a Brownian oscillator [10–12], a drag force also
appears when the atom is moving with respect to a thermal
field [13–16]. In this case, the nonzero-temperature part of
the blackbody spectrum sets a preferred inertial frame with
respect to which freely moving particles tend to have zero
velocity on average. This drag force, also called blackbody
friction, has been investigated in different scenarios including
constant relativistic [17,18] and nonrelativistic [13,19] veloc-
ities. Its impact on the atomic linewidth-broadening [14–16]
was also considered in connection with atomic clocks [20].

Another option to violate the conditions for Lorentz invari-
ance is to introduce one or more objects in close proximity of
the moving particle. In this case, even at zero temperature, a
frictional force arises due to the interaction with the material-
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modified electromagnetic vacuum field and an external agent
is required to drive the motion at constant velocity [21,22].
Due to its connection with quantum fluctuations, this drag is
usually referred to as quantum friction [22]. Blackbody and
quantum friction are the manifestations of a phenomenon that
we call electromagnetic viscosity. Similar to classical physics
[23], we quantify the viscosity in the system’s steady state as

μ = F/v, (1)

where F the is total electromagnetic drag acting on the atom.
Although the viscosity has already been investigated in

various contexts [16,21,24–39]—including decoherence [40],
thermodynamic considerations [41,42], and its connection
to Cherenkov [43] and Hawking radiation [44,45]—some
interesting and relevant features have escaped attention. In
the following, we generalize the earlier findings going be-
yond common approximations and bridging the gap between
quantum and blackbody friction within a recently developed
non-Markovian and self-consistent framework [44,46–48].
Within this approach we highlight the intriguing properties of
the frictional interaction, recasting previous results in a more
rigorous context.

The paper is structured as follows: Section II contains the
central result of the present paper in the form of equivalent
general expressions for the frictional force on an atom moving
within a translational invariant environment. The section also
contains our model and a discussion on how our formulas
go beyond the existing literature. In Sec. III we analyze our
expressions in detail considering a few relevant constraints.
Keeping our discussion rather general, we investigate the elec-
tromagnetic viscosity in various contexts, starting with the
motion of a particle in the thermal vacuum, for which we
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FIG. 1. Schematic of an atom moving parallel to an arrangement
of different, translationally invariant objects surrounded by thermal
radiation at temperature T .

assess the validity of a common approximation. We show that
at finite temperature and at small velocity, the electromagnetic
viscosity necessarily scales as ∝ v0T 2 for a large class of
substances which includes typical materials. It also naturally
decomposes into three contributions

μ → μT = μvac
T + μt

T + μr
T . (2)

Here, (i) μvac
T describes the interaction with the thermal quan-

tum vacuum field, (ii) μt
T includes the interaction between the

material-modified field and the atomic translational degrees
of freedom, and (iii) μr

T corresponds to the contribution in-
volving the exchange of angular momentum. The latter arises
from the so-called spin-momentum locking of light [49,50],
a behavior induced by the natural confinement of the electro-
magnetic field in the vicinity of an interface of two different
materials [51]. As we will see, μr

T tends to reduce the fric-
tional interaction and its description requires the inclusion of
the full backaction from the environment onto the dynamics
of the particle. This contribution is therefore not covered
by traditional approximate or equilibrium-based techniques.
Our analysis allows us to identify well-defined scales which
characterize in which regimes thermal or quantum fluctuations
dominate the frictional interaction. At the end of this section,
we test our general results addressing, as an example, the
specific geometry of a plate for which we provide detailed
analytical asymptotes as well as numerical evaluations [52]. In
Sec. IV, we analyze our findings from a different perspective
and explore the spectral density of the interaction between
atom and field. Finally, in Sec. V, we close our discussion
with summarizing remarks.

II. DIPOLE FORCE ON A MOVING ATOM

We consider an electrically neutral atom that is propelled
by an external agent along the x direction, corresponding
to the direction of translational invariance of a complex
macroscopic electromagnetic environment (see Fig. 1). The
environment is structured by N (not necessarily identical)
translationally invariant objects comprised of common, linear,
and passive material(s). For simplicity, we neglect magnetic
properties of both the atom and its surroundings. The atom’s
motion (its center-of-mass kinematics) is assumed to be de-
scribed by the classical trajectory ra(t ) = xa(t )x + Ra. This

is usually a good approximation as long as we consider atoms
with relatively large masses or velocities (de Broglie wave-
lengths less than one angstrom). The position of the atom
in the transversal plane Ra ≡ (ya, za) is assumed to be con-
stant. Practically, this might be resulting from the specific
structuring of the environment (e.g., a geometry-material con-
figuration that neutralizes transversal forces on the atom [53]),
external interactions (e.g., external potentials [54,55]), or in
general from considering configurations where the change
Ra ≡ (ya, za) might be neglected with respect to the relevant
timescales.

During its motion, due to the interaction with the elec-
tromagnetic field, the atom experiences a drag force which,
after some transient dynamics, eventually balances the exter-
nal drive. The focus of our analysis is on the investigation
and characterization of the viscosity when the system reaches
this nonequilibrium steady state (NESS), i.e., when the atom
moves at constant velocity v = vx. In our description, we
assume that the total system’s density matrix at the initial
time t0 in the far past of the experiment factorizes into
ρ̂(t0) = ρ̂atom(t0) ⊗ ρ̂field(t0). In the NESS, however, due to
its dissipative nature, the total system does not conserve any
memory of its initial condition. We also consider geometric
dimensions such that a dipole description of the particle is
sufficient and we can neglect higher-order multipoles. The
atom is then described by its electric-dipole operator d̂ and the
total electric field by the operator Ê. In our case, the electric
field which would exist without the atom, Ê0, is supposed
to be thermalized at temperature T and, therefore, obeys the
fluctuation-dissipation theorem [56]. In momentum and fre-
quency space, we can write

〈
Ê0(q, Ra, ω)ÊT

0 (q̃, Ra, ω̃)
〉

= 8π2h̄[1 + n(ω)]G�(q, Ra, ω)δ(ω + ω̃)δ(q + q̃), (3)

where q is the component of the wave vector along the x direc-
tion, ω is the frequency of the radiation, h̄ is Planck’s reduced
constant and δ(·) is the Dirac function. The superscript “T”
gives the transpose of a matrix rendering the previous product
of operators a dyadic (see Appendix). G is the Green tensor
that solves Maxwell’s equations with appropriate boundary
conditions for our setup. Since we will be interested in posi-
tions having the same transversal coordinates, Ra will appear
only once in the argument of the Green tensor. The angular
brackets denote the quantum average over the initial state den-
sity matrix ρ̂(t0), the subscript “�” denotes a specific form of
the tensor, which for the Green tensor is G� = (G − G†)/(2i).
Also, we have defined the Bose occupation number n(ω) =
(eβ h̄ω − 1)−1 with the inverse temperature β = 1/(kBT ) and
where kB is Boltzmann’s constant.

Some general comments can be made about the tensor
G� [48,57]: In vacuum, due to the transversality of the field,
G� is a symmetric tensor and is even in q. However, in the
vicinity of an interface, due to the spatial confinement charac-
terizing the near field, the radiation can feature a longitudinal
component with respect to the direction of motion. This trans-
lates into (off-diagonal) skew-symmetric components in G�
that are odd in q. Mathematically, this encodes the so-called
spin-momentum-locking of light [58]. As we see below, the
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latter has specific consequences in our particular context [see
discussion after Eq. (20)].

In the nonrelativistic case, the motion-induced drag expe-
rienced by the atom can be written as

F (t ) = lim
r→ra(t )

〈d̂(t ) · ∂xÊ(r, t )〉, (4)

which is related to the x component of the Lorentz force
[51,59]. For our purposes it is convenient to decompose the
electric-field operator as a sum of Ê0, the uncoupled field
introduced above, and Êind which describes the radiation in-
duced by the atom. Proceeding as in Ref. [46], we can write

Êind(r, t ) =
∫ t

t0

dt ′G(r, ra(t ′), t − t ′)d̂(t ′)

= 2i
∫ t−t0

0
dτ

∫
dω

2π

∫
dq

2π
e−iωτ eiq[x−xa(t−τ )]

× G�(q, Ra, ω)d̂(t − τ ) (τ = t − t ′). (5)

Given that the interaction between the atomic internal degrees
of freedom and the electromagnetic fluctuations is typically
weak, we focus on linear dynamics for the dipole operator
associated with a single frequency ωa, corresponding to the
transition from the highest occupied orbital to the lowest un-
occupied one. We can hence model the particle in terms of a
three-dimensional (3D) isotropic oscillator [59,60](

∂2
t + ω2

a

)
d̂(t ) = α0ω

2
aÊ(ra(t ), t ), (6)

where α0 is the static atomic polarizability, describing the
coupling between the atom and the electromagnetic radiation
[46,51,59].

When the NESS is achieved, we have that xa(t ) ∼ vt .
Then, we can solve the system self-consistently up to all
orders in the coupling (connected to α0 [48]) and evaluate
the atomic power spectrum Sv (ω) from the dipole correlator
[48,51] 〈d̂(ω)d̂T(ω̃)〉 = 4π2δ(ω + ω̃)Sv (ω), obtaining

Sv (ω) = αv (ω)κv (ω)α†
v (ω). (7a)

The extra subscript “v” explicitly denotes that the expressions
are evaluated in the NESS and, therefore, depend on the ve-
locity. The tensors κv and αv are, respectively, the steady-state
nonequilibrium electric field’s power spectrum [Eq. (3)] and
the steady-state dressed atomic polarizability. They can be
written as

κv (ω) = h̄

π

∫
dq̃

2π
[n(ω+

q̃ ) + 1]G�(q̃, Ra, ω
+
q̃ ), (7b)

αv (ω) =
[
1 − αB(ω)

∫
dq

2π
G(q, Ra, ω

+
q )

]−1

αB(ω), (7c)

where ω±
q = ω ± qv is the Doppler-shifted frequency, 1 is

the three-dimensional unit matrix, and αB(ω) = α0ω
2
a/(ω2

a −
[ω + i0+]2) is the (causal) bare polarizability of the isolated
atom [61]. The appearance of the Green tensor in Eq. (7c)
indicates that the polarizability is dressed via the interaction
with the electromagnetic environment.

A. Three equivalent expressions describing
the frictional interaction

For our next step it is useful to rewrite the expression in
Eq. (4) as follows:

F (t ) = lim
r→ra(t )

2Re〈d̂(t ) · ∂xÊ⊕(r, t )〉, (8)

where Ê⊕ is the positive-frequency component of the electric-
field operator (we refer to Ref. [47] for details). While the
order of the operators is irrelevant in Eq. (4), notice that this is
not true anymore for the above rewritten version, Eq. (8). As
a consequence the specific ordering of Eq. (8) has to be pre-
served in the calculation. It is well known that, despite that the
final result is independent from this choice, the interpretation
of the different contributions appearing in the final expres-
sion and their attribution to the dipole or the field dynamics
might depend on it [47,62,63]. Inserting our description for
the dipole’s and the field’s dynamics [Eqs. (5)–(7)] in Eq. (8)
yields in the steady-state (−t0, t → ∞) the frictional force
(see the Appendix)

F = −2
∫ ∞

0
dω

∫
dq

2π
q Tr

[{
h̄

π
n(ω)αv,�(−ω−

q )

+ Sv (−ω−
q )

}
GT

�(q, Ra, ω)

]
, (9)

where we have defined αv,� analogously to G� and we have
used that G�(q, Ra, ω) = −GT

�(−q, Ra,−ω) as well as the
fact that the product of a symmetric and a skew-symmetric
matrix vanishes under the trace. In Eq. (9), the first and
the second term in the curly brackets, respectively, corre-
spond to the dipole interacting with the unperturbed field Ê0

and the induced field Êind. We note that both terms depend
on the temperature [the power spectrum implicitly via the
nonequilibrium fluctuation-dissipation theorem in Eq. (7a)].
Equation (9) generalizes the expression for the frictional force
reported in previous work [47,59] for T = 0 and includes both
blackbody and quantum friction as special limits. The latter is
recovered noticing that n(ω) → 0 for T → 0 (ω > 0), while
the former requires the use of the vacuum Green tensor and
some further considerations (see below). It is opportune to
mention here that the previous calculation explicitly uses the
assumption of a linear relation between the dipole’s and the
electric field’s dynamics. This is, for example, the case for
the isotropic oscillator described in Eq. (6). Conversely, the
procedure leading to the zero-temperature version of Eq. (9)
does not depend on the concrete model that describes the
atomic internal degrees of freedom [47,59].

The physics of the system imprints some mathematical
properties on the quantities appearing in Eq. (9). These can
be used to rewrite the above expression in a different but
equivalent form. Indeed, replacing ω → ω + qv and realizing
that the integral kernel is an odd function on the interval
q ∈ (−∞,∞) and ω ∈ [−qv, 0], we can rewrite Eq. (9) as

F = 2
∫ ∞

0
dω

∫
dq

2π
q Tr

[{
h̄

π
[1 + n(ω+

q )]αv,�(ω)

− Sv (ω)

}
G�(q, Ra, ω

+
q )

]
. (10)
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Here, we have also utilized that n(−ω) = −[1 + n(ω)],
αv,�(−ω) = −αT

v,�(ω) and that the power spectrum fulfills
the identity Sv (−ω) = ST

v (ω) − (h̄/π )αT
v,�(ω) (see the Ap-

pendix for details). The main difference between Eqs. (9) and
(10) lies in a rearrangement of the contributions due to the
field’s and to the dipole’s dynamics. In particular, Eq. (10)
corresponds to an approach where the splitting related to a
positive and negative frequency integration is not performed
(see the Appendix).

We can recast the expression for the frictional force in a
third equivalent form. Considering Eq. (7a), we can write the
following alternative expression:

F = h̄

π

∫ ∞

0
dω

∫
dq

2π
q

∫
dq̃

2π

×
{

coth

(
β h̄ω+

q

2

)
− coth

(
β h̄ω+

q̃

2

)}

× Tr[αv (ω)G�(q̃, Ra, ω
+
q̃ )α†

v (ω)G�(q, Ra, ω
+
q )], (11)

where we used that 2n(x) = coth(x/2) − 1. To derive the pre-
vious equation we used that αv,� is connected to the Green
tensor via the identity

αv,�(ω) = αv (ω)
∫

dq

2π
G�(q, Ra, ω

+
q )α†

v (ω). (12)

Equation (11) is the result we would have obtained avoid-
ing the frequency splitting and using the symmetric ordering
for the operators (see the Appendix). The advantage of the
previous equation is that it explicitly manifests the quadratic
behavior of the frictional interaction in the Green tensor,
revealing thereby the strong nonadditive features already ob-
served in the zero-temperature case [53]. This means that also
for T = 0 a modification of the geometry or materials of the
setup leads to a nontrivial change of the viscosity coefficients
[45,53,64].

Equations (9)–(11) provide three equivalent expressions
describing the electromagnetic drag acting on an atom moving
within a translational invariant environment. In view of these
alternative expressions, it becomes manifest that, as expected,
the corresponding ordering of operators, when carried out
consistently, has no consequences for the observable force.

B. Comments and general considerations

The previous expressions bear some similarities with other
results existing in the literature [16,21,28,29,31–33,41]. How-
ever, they feature important differences and go beyond many
standard approximations. Our approach is nonperturbative
and fully non-Markovian. It avoids issues which have been
pointed out in earlier work showing the necessity of an ade-
quate bookkeeping of all contributions within a perturbative
approach [65] and the need for a good description of the
system’s low frequency (long time) behavior [45,47]. It also
dispenses with common assumptions used by equilibrium-
based techniques. One of the most common is the local
thermal equilibrium (LTE) approximation, which forgoes the
opportunity to solve the system exactly and directly applies
the equilibrium fluctuation-dissipation theorem also to eval-
uate nonequilibrium correlators. In the LTE approximation,
spatially separated but interacting subsystems (e.g., in our

case the atom and the field) are assumed to be at equilib-
rium, although the whole system is out of equilibrium [21].
Technically, in our case, it amounts to replacing n(ω+

q̃ ) →
n(ω) in Eq. (7b) (see Refs. [47,48] for details) or equiva-
lently coth(β h̄ω+

q̃ /2) → coth(β h̄ω/2) in Eq. (11). Depending
on the system, the validity of this approach is question-
able [48] and it was already disproved for quantum friction
[46,51]. It was shown that this approximation ignores cer-
tain low-frequency contributions to the power spectrum of
the interaction [48]. The generalization provided by Eqs. (9),
(10), or (11) allows us to extend our considerations to finite
temperature and to assess the validity of the approximation.
In the following, we will often use the LTE approximation as
a reference in order to highlight the difference introduced by
our nonequilibrium theory in the description of the electro-
magnetic viscosity at finite temperature.

Another relevant aspect of our approach is that is allows
us to investigate a part of the interaction involving the spin
of the radiation at finite temperature. This contribution was
recently analyzed in the case of quantum friction and here
we treat the finite temperature generalization. In the case
of quantum friction, it was shown how it deeply affects the
interaction and allows us to tune it [51,53]. Mathematically,
the spin-dependent component of the interaction is encoded
in the tensorial structure of the integral kernels of all the
expressions for the drag given above. The key quantities are
the dressed polarizability and the power spectrum in Eqs. (7).
In particular, Eq. (7a) is central because it generalizes the
nonequilibrium fluctuation-dissipation theorem introduced in
previous work [46,51] to finite temperatures: In spite of its
formal resemblance to equilibrium fluctuation-dissipation the-
orems [56], Eq. (7a) not only allows us to go beyond the LTE
approximation but also includes effects that do not subsist
in equilibrium. Equations (7) reveal that the particle’s power
spectrum is deeply intertwined with the electromagnetic en-
vironment (represented by the Green tensors), highlighting
the importance of a self-consistent approach that fully in-
cludes backaction from the field onto the particle [19,48].
More precisely, the behavior of dressed polarizability and
the field spectrum in Eqs. (7) can be related to the electro-
magnetic local density of states through the diagonal part
of the Green tensor, ρLDOS ∝ ImTr[G] [66]. Interestingly,
however, the tensorial structure of the expression for the
force indicates that off-diagonal elements of the Green ten-
sor can also contribute to the interaction. These off-diagonal
elements are connected to the spin local density of states intro-
duced in Ref. [45,51] and specifically to the spin-momentum
locking of light in the vicinity of a surface [67], which
describes a well-defined connection occurring between the
spin and the wave vector of the electromagnetic radiation.
In combination with the occurring of Doppler-shifted fre-
quencies, the light-matter interaction then conveys a transfer
of momentum which depends on the exchange of angular
momentum between the atom and the field. This generates a
corresponding component for the force [51], whose behavior
will become an important part in our discussion of μT [see
Eq. (26)].

In the next sections we analyze in detail our results in
some limiting cases. We further discuss their connections as
well as their differences with respect to the existing literature
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and highlight the new information achievable within our more
comprehensive description.

III. THERMAL AND QUANTUM VISCOSITY

We now turn our attention back to our main result, specif-
ically to Eq. (11), and focus on the behavior of the viscosity
coefficient μ [see Eq. (1)]. In the following (see Secs. III A
and III B), we focus first on the behavior of μ at the leading
order in the velocity, since the corresponding expressions are
more likely to be relevant in experiments. The behavior of the
drag at higher velocities as well as the corresponding velocity
scales are discussed at the end of Sec. III C. Subsequently, we
consider the concrete example of an atom moving parallel to
a flat interface (see Sec. III D).

A. Viscosity at low velocities: Motion through
the thermal vacuum

Let us consider Eq. (11) and the corresponding viscos-
ity coefficient μ [see the definition in Eq. (1)]. Expanding
the coth functions to linear order in v, we obtain an elec-
tromagnetic viscosity coefficient which only depends on the
temperature and Ra, i.e.

μT ∼ − h̄2β

2π

∫ ∞

0
dω

∫
dq

2π

∫
dq̃

2π

q(q − q̃)

sinh2
(

β h̄ω

2

)
× Tr[αv=0(ω)G�(q̃, Ra, ω)α†

v=0(ω)G�(q, Ra, ω)].

(13)

We start with a remark about the case of an atom moving
through thermal vacuum. Since the vacuum Green tensor is
symmetric and even in q (or q̃) [68], the term ∝qq̃ in Eq. (13)
vanishes under the integration over the wave vectors. We also
have that ∫

dq

2π
q2Tr[G�(q, Ra, ω)] = ω5

6πε0c5
, (14)

with ε0 being the vacuum permittivity [68]. Since vacuum is
homogeneous and isotropic, taking Eq. (7c) into account, we
further find that αv,�(ω) = Im[αv=0(ω)]1. Therefore, Eq. (13)
reduces to

μvac
T ∼ − vh̄2β

3πc5(4πε0)

∫ ∞

0
dωIm[αv=0(ω)]

ω5

sinh2
(

β h̄ω

2

) .

(15)

This is the result for blackbody friction obtained in Ref. [13]
and by others later [14–16,18,20,41].

For the sake of completeness, we quickly review the main
outcomes surrounding the result in Eq. (15), postponing a
more general discussion related with our approach to Sec. IV.
The frictional force vanishes in the limit T → 0, correspond-
ing, as expected, to a viscosity μvac

T which is exclusively
thermal. Depending on the temperature or more precisely on
the thermal frequency ωth = kBT/h̄, the main contribution to
the integral in Eq. (15) is characterized either by the frequency
range which includes the atomic transition, ωth � ωa, or not,
ωth < ωa. In the first case, on can approximate Im[αv=0(ω)] ∼
Im[αB(ω)] = α0ωaπδ(ωa − ω)/2 (ω > 0) leading to the vac-

uum thermal viscosity

μvac
T ∼ − α0

4πε0

h̄ω5
a

3c5

β h̄ωa

sinh2
(

β h̄ωa

2

) . (16)

For optical transitions, however, such a behavior occurs at the
rather high temperatures of ≈104 K. At smaller temperatures,
kBT � h̄ωa, Eq. (16) does not represent the correct expres-
sion since low frequencies dominate the integrand in Eq. (13).
The approximation we used to describe the polarizability for
computing Eq. (16) is no longer adequate and we need to
employ the dressed polarizability. Upon inserting the vacuum
Green tensor [68] in Eq. (7c), we obtain at the leading order
of the atom-surface coupling

μvac
T ∼ −32π5

135
h̄
α2

0

ε2
0

(
kBT

h̄c

)8

, kBT � h̄ωa, (17)

which replaces the exponentially damped result from Eq. (16).
Equation (17) is one example of incorporating higher-order

corrections of the atom-field coupling into the description and
a similar expression was discussed earlier in the context of
one-loop corrections to the quantum-electrodynamical atom-
field coupling [16,18]. In our approach, the corresponding
expressions arise naturally from the self-consistent descrip-
tion of light-matter interaction, which in Eq. (15) results in
a particle’s optical response that is fully dressed. Notice also
that many of the earlier works derived μvac

T in Eq. (15) using
the LTE approximation. At first sight, this might appear in
contrast with our discussion at the end of the previous sec-
tion about the formalism that led to Eq. (15). Interestingly,
however, at the leading order in the velocity, considering
the LTE approximation in Eq. (11), i.e., coth(β h̄ω+

q̃ /2) →
coth(β h̄ω/2), is mathematically identical to neglecting the
∝qq̃ term in Eq. (13). In other words, for the motion-induced
electromagnetic viscosity acting on an atom in a vacuum
at finite temperature, our nonequilibrium framework predicts
that deviations from the LTE approximation appear at orders
higher than linear in v. This result further clarifies the role of
the LTE in the frictional interaction and helps to avoid possible
sources of confusion.

B. Viscosity at low velocities: Motion through
a structured environment

Equation (13) becomes more interesting when the atom’s
environment is no longer homogeneous, i.e., when, in addition
to the thermal field, other macroscopic objects are present
in the space near the atom. In this case, the Green tensor
is not necessarily symmetric [57,69] and the previous con-
siderations made for vacuum do not apply. Still, since the
Green tensor is a susceptibility [70], G�(q, Ra, ω) is odd in ω

and, consistently with Eq. (5), one also has G�(q, Ra, 0) = 0.
For simplicity, in the following, we additionally assume that
all the translationally invariant objects comprising the elec-
tromagnetic environment are made from an (not necessarily
local and not necessarily the same) “Ohmic material.” For
our analyses, this assumption is mathematically equivalent
to the requirement G′

�(q, Ra, 0) = 0, where the prime de-
notes a derivative with respect to frequency. This property
applies to a large class of dissipative and dispersive materials.
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Generalizations are possible and, as an example, we refer to
Ref. [71] where the frictional interaction at zero temperature
between an atom and lossy multilayer structures is discussed.

Inspecting Eq. (13) [or also Eq. (10)], one realizes that
the thermal field relevantly impacts the interaction at frequen-
cies ω � ωth. At room temperature, this yields ωth ≈ 26 meV
(about 0.34 meV at 4 K) which is much smaller than typical
optical transition frequencies of, e.g., alkali-metal atoms [72]
or resonances of common materials [73]. For our purposes it is
then reasonable to assume that the temperature cannot appre-
ciably excite any resonance in the system. As for Eq. (17), our
interest lies in the frequency regime ωth < ωa, which provides
the leading-order correction to the zero-temperature result.
This can be found by considering the moment asymptotic
expansion [74,75]

h̄β

2 sinh2
(

β h̄ω

2

) ∼ −2δ(ω) + π2

3

2

h̄2β2
δ′′(ω), (18)

where the double-prime denotes the second derivative with
respect to frequency. The first term corresponds to the zero-
temperature limit while the second term is the first thermal
correction. Upon inserting the above expression into Eq. (13),
we find, however, that the expression arising from the first
term on the right-hand side (r.h.s.) of Eq. (18) always
identically vanishes due to the properties of the Green ten-
sor. In other words, in the steady-state, we always have
limT →0 μT = 0, which is equivalent to saying that at zero
temperature the frictional force does not have a linear de-
pendence in velocity [29,40,76]. In empty space, this can
be understood as a consequence of the system’s Lorentz in-
variance. When material interfaces are present, this result is
less evident and has been discussed elsewhere [30,59,77,78].
In agreement with some earlier work [40,47,53,59,65], it
indicates that in the steady state at T = 0, when only quan-
tum fluctuations are present, we would have to expand the
frictional force in Eq. (11) to higher orders in v to have a
nonzero electromagnetic viscosity. In particular, in the steady-
state for the Ohmic case, quantum friction corresponds at the
leading order in the velocity to the electromagnetic viscosity
μ(v, 0) = μQF ∝ v2. The latter has been previously analyzed
[51,53] and for completeness we report the result for μQF at
leading order in the atom-surface coupling,

μQF ∼ −α2
0 h̄v2

12π

∫
dq

2π

∫
dq̃

2π
(q + q̃)4

× Tr[G′
�(q̃, Ra, 0)G′

�(q, Ra, 0)]. (19)

We recall that the previous expression is the result of an
analysis showing that quantum friction at low velocities is typ-
ically a low-frequency phenomenon, dominated by ω � v/λa,
where λa usually correspond to the minimal distance from
one of the objects shaping the electromagnetic environment
of the atom. We remark that for Eq. (19) it was assumed
that v/λa is much smaller than any of the system’s resonance
frequencies (note that for v ≈ 1 km/s and λa ≈ 1 nm, one has
v/λa ≈ 0.6 meV [46,53]).

The second term on the r.h.s. of Eq. (18) gives the
leading-order temperature correction of the low-velocity elec-
tromagnetic viscosity in Eq. (13). Independently from the
geometry and the detailed material composition of the envi-

ronment, our approach shows that the temperature correction
scales quadratically in T and corresponds to a frictional force
that grows linearly with v in the steady state. This is in line
with other analyses, where specific geometries and materials
have been considered [21,29,40,76,79]. Focusing on the lead-
ing order in atom-surface coupling, using the symmetries of
the integral kernel with respect to the wave vector as well as
that G� is odd with respect to frequency, the temperature cor-
rection can be written in a form which is similar to Eq. (19),
i.e.,

μT ∼ − α2
0π

3h̄β2

∫
dq

2π

∫
dq̃

2π
(q − q̃)2

× Tr[G′
�(q̃, Ra, 0)G′

�(q, Ra, 0)]. (20)

The previous equation represents an additional central result
of this paper. Since G�(q, Ra, ω) is a Hermitian positive-
semidefinite tensor (for ω > 0), Eq. (20) implies that, in
general, μQF, μT � 0 as one should expect for a frictional
force. Also, for a generic (passive) system that is translation-
ally invariant along the x axis, G�(q, Ra, ω) can be written
in terms of a real, symmetric (positive-semidefinite) matrix
(q, Ra, ω) (even in q) and a real vector s⊥(q, Ra, ω) (odd in
q) normal to the invariance axis [80]. We have indeed that

G�(q, Ra, ω) = (q, Ra, ω) + s⊥(q, Ra, ω) · L, (21)

where [Li]jk = −iεijk. denotes the generator of 3D rotations
around the i axis [see also discussion below Eq. (3)] [53]. The
vector s⊥(q, Ra, ω) is connected to the spin-dependent part of
the electromagnetic density of states. In addition, using the
properties of the trace, Eq. (21) leads to the decomposition

μT = μt
T + μr

T . (22)

The first term contains only the symmetric matrix, :

μt
T ∼ −α2

0
2π

3h̄β2

∫
dq

2π

∫
dq̃

2π
q2

× Tr[′(q̃, Ra, 0)′(q, Ra, 0)], (23)

and, since  is positive semidefinite, we have that, in Eq. (23),
μt

T < 0. The previous expression can be related to the descrip-
tion of the thermal correction of the electromagnetic viscosity,
which is usually obtained within the LTE approximation.
Hence, the term μr

T is not captured within the LTE approach,
while it is in ours. Using Tr[LiLj] = 2δij, μr

T reads

μr
T ∼ α2

0
4π

3h̄β2

∫
dq

2π

∫
dq̃

2π
qq̃s′

⊥(q̃, Ra, 0) · s′
⊥(q, Ra, 0)

= α2
0

4π

3h̄β2

∥∥∥∥
∫

dq

2π
qs′

⊥(q, Ra, 0)

∥∥∥∥
2

. (24)

As mentioned above, it is connected to the interaction be-
tween atom and electromagnetic excitation with nonzero spin.
Its role has already been highlighted for quantum friction
[51], i.e., strictly T = 0, whereas we consider here the finite-
temperature case. Interestingly, like for the zero-temperature
limit, the previous analysis shows that μr

T is positive and,
therefore, tends to decrease the viscosity experienced by the
moving atom [e.g., see Eq. (26) below]. In combination with
the spin-momentum locking, this reduction can be related to
a transfer of momentum to the atom from the field which is
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selectively mediated through an exchange and a net trans-
fer of angular momentum [51]. Given its physical origin, in
complete analogy with the T = 0 case [53], the impact of μr

T
can be diminished by choosing an axis-symmetric geometry
that, for a trajectory along the symmetry axis, suppresses the
exchange of angular momentum between the atom and the ra-
diation. Indeed, for symmetry reasons, along such a trajectory,
one must have s⊥ = 0.

C. Viscosity regimes and characteristic scales

Lastly, we would like to point out that, while μT → μvac
T ∝

T 8 in Eq. (17) is related to the general properties of vacuum,
the quadratic temperature dependence of μT in Eq. (20) is
connected to the presence of objects and our Ohmic assump-
tion on the electromagnetic response of the involved materials.
This is also equivalent to a local density of states that scales
linearly with the frequency for ω → 0. Deviations from the
Ohmic behavior, including those leading to μvac

T , are contained
in our theory, but more quantitative estimations require us to
adequately reconsider Eq. (13) and its low-frequency limit.
Mathematically, these features are encoded in the Green ten-
sor G. In particular, the expected transition μT ∝ T 2 → T 8

as a function of the distance of the atom from the objects
can be seen as a consequence of the general decomposition
G = G0 + Gsc. Here, G0 is the homogeneous vacuum Green
tensor and Gsc is the scattering part of the Green tensor, due to
the presence of the objects [31]. The two tensors not only scale
differently with the frequency but also with Ra: while G0 does
not depend on Ra and is always nonzero, the contribution of
Gsc scales as the inverse of the distance between the atom to
the objects’ surface (≈λa), making the scattering contribution
more or less relevant as a function of Ra.

Some general considerations can also be made regarding
the transition μQF ↔ μT ∝ T 2 and the behavior of μ at higher
velocities. As discussed above, the viscosity coefficients are
connected with the low-frequency behavior of the integrand
in Eq. (11). The two characteristic frequency scales are, re-
spectively, v/λa and kBT/h̄. They are related to the hyperbolic
cotangents appearing in Eq. (11), which effectively limit the
range of the frequency integration. In the Ohmic limit, we
have μQF � μT if v/λa � kBT/h̄ and vice versa. This allows
us to define the following critical velocity, distance, and tem-
perature:

vc ≈ kBT λa

h̄
, λc ≈ h̄v

kBT
, Tc ≈ h̄v

kBλa
. (25)

They determine the characteristic scales where μQF and μT

interchange their role as the dominant contribution to the
interaction, emphasizing which kind of phenomenon (ther-
mal vs quantum fluctuations) is mainly responsible for the
breaking the conditions for Lorentz invariance. Curiously,
the atom needs to have a sufficiently high kinetic energy
(v > vc) to start to capture more of the “quantumness” of
the frictional force (at T = 3 K and for λa ≈ 10 nm one has
that vc ≈ 4 km/s). Indeed, for v < vc, the electromagnetic
viscosity is essentially given by μT . Physically, this behavior
can be understood by considering the different mechanisms
in the frictional process. As for blackbody friction, it is the
thermal bath that nonresonantly drives the interaction at low

(a) (b)z x

FIG. 2. Schematic description of the different mechanisms de-
termining the viscosity perceived by an atom moving in a complex
structured electromagnetic environment. (a) At sufficiently low ve-
locities, large distances or high temperatures, the frictional process
is dominated by thermal excitations (red points with black arrows).
(b) At high velocities, short separations or low temperatures, the
system behaves more according to its quantum characteristics: The
viscous dynamics is determined by the interactions with the elec-
tromagnetic quantum fluctuations. Due to the anomalous Doppler
effect, the atom can get excited (not shown) and virtual excitations
can become real (yellow points with yellow arrows) at the expense
of the kinetic energy of the atom. The relevance of these excitations
“extracted” from vacuum grows with v and dominates over the ther-
mal interaction at sufficiently high velocities. In both limits, the local
electromagnetic density of states is modified by the presence of the
vacuum-material interface (yellow curly arrows), inducing a func-
tional dependence of the frictional interaction on the atom-surface
separation.

velocity [see Fig. 2(a)]. However, due to the boundary condi-
tions imposed by the nonhomogeneity of the environment, the
density of states for the electromagnetic field is substantially
different from that of the empty space, specifically in the
evanescent region due the appearance of surface states. The
difference in the density of state induces a modification in
the interaction which depends on the position of the atom
(see also Sec. IV below). Simultaneously, however, due to
the motion-induced anomalous Doppler effect [51,81–83], the
atom can get excited and virtual excitations (surface polari-
tons) can be “energized” and become real at the expense of the
atomic kinetic energy, participating in the frictional process
[see Fig. 2(b)]. Their relevance is proportional to the velocity
of the atom and connected to the shape of the density of
states of the electromagnetic field, determining the functional
dependency in v of μQF. Therefore, for constant T , depending
on v, either the quantum or the thermal mechanism dominates
the frictional interaction.

The same frequency scales v/λa and kBT/h̄ allow us to
understand the behavior of the viscosity at higher velocity. As
we already saw with blackbody friction, as soon as the inte-
gration range includes the atomic resonance ωa, the behavior
of the viscosity changes and its value is likely enhanced. In
this case, one can speak of a resonant interaction where the
thermal radiation or the virtual excitations which have become
real have sufficient energy to excite the atomic transition and
drive the absorption and the emission process at the leading
order (single-excitation level). Still, due to the broadband
nature of the involved electromagnetic field, the interaction
usually remains weak despite the enhancement. We can, in
general, define the threshold temperature T ≈ Ta ≡ h̄ωa/kB
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and velocity va ≡ ωaλa above which this behavior occurs.
While Ta ≈ 104 K for optical transitions, va can be diminished
by shortening the distance of the particle from the surface of
one of the objects in the environment. Still, for λa ≈ 1 nm and
optical transitions, one has that va is at the order of ≈10−2 the
speed of light, which is larger than typical values in experi-
ments and justifies our analysis for low velocities. Conversely,
as previously pointed out for specific configurations [16,65]
and confirmed within our general framework, at velocities
and temperatures smaller than va and Ta, the interaction is
nonresonant and one needs to consider higher-order (two-
or more-excitation-) processes in order to correctly describe
the frictional dynamics. Interestingly, these observations can
be more generally connected to the nature of the available
(dissipative) interaction channels within the system. We will
cover this topic with more detail in Sec. IV.

D. Example: An atom moving at constant height
and velocity above a flat surface

To illustrate our general findings in more detail, it is
instructive to consider a simple and widely used setup to
compute the viscosity coefficients, i.e., an atom moving in
vacuum at constant velocity with respect to a single planar half
space located at z � 0 and comprised from a local, Ohmic,
dispersive, and dissipative material. In this case za = λa mea-
sures the distance from the bulk’s interface. For simplicity, we
focus here on a motion in the near field of the surface since this
is the regime where the frictional interaction becomes most
relevant [21]. Upon inserting the corresponding expression for
the Green tensor [47,51,68] and performing the wave-vector
integrals, we find [79,84,85]

μT = − 3

π
h̄α2

0ρ
2

( kBT
h̄

)2

(2za)8 , μr
T = −μt

T

2
, (26)

where ρ = limω→0 ∂ωIm[r(ω)]/(2ε0) with r(ω) being the
transverse magnetic Fresnel coefficient. The parameter ρ,
which is connected to the low-frequency tail of the local
density of states, highlights the dissipative properties of the
electromagnetic environment and, specifically for conductors,
effectively corresponds to the resistivity of the involved mate-
rial. Notice that, since it is connected with our assumption of
an Ohmic behavior, the limit ρ → 0 in the previous expres-
sion has to be handled with care and in general does not imply
the vanishing of the electromagnetic viscosity. We already saw
that, when ρ vanishes because no objects are present (Gsc →
0), Eq. (26) needs to be replaced by Eqs. (16) and (17).
For non-Ohmic materials, Eq. (26) needs to be reevaluated.
For example, in the limit of a nondissipative material with a
constant and real refraction index n, the frictional interaction
is occurring above the Cherenkov threshold, i.e., v � c/n
[83,86]. In the specific geometry considered here, we find that
the spin-sensitive part of the interaction turns out to reduce
the viscosity by a factor of one half. For comparison, for
the same setup, the electromagnetic viscosity exclusively due
to quantum fluctuations is also given by μQF = μt

QF + μr
QF,

where

μQF = − 18

π3
h̄α2

0ρ
2 v2

(2za)10 , μr
QF = −5

7
μt

QF. (27)

This corresponds to a reduction of μt
QF by roughly 70% due

to μr
QF [51]. As discussed above, the contribution associated

with μr can be suppressed in specific geometries, indepen-
dently from the temperature. In Ref. [53] it was pointed out
that this suppression further enhances the nonadditive be-
havior of the electromagnetic viscosity. Specifically, when
the atom moves close enough to N objects (see Fig. 1),
the resulting total viscosity μN has a maximal enhance-
ment with respect to a single interface μsurf which roughly
scales as μN/μsurf ≈ φN2. Based on the previous argu-
ments, one should expect φQF ≈ (1 − 5/7)−1 = 7/2 when
μQF dominates or φT ≈ (1 − 1/2)−1 = 2 when μT describes
the frictional process. According to this estimate, for an atom
moving at the center of a cavity made from two identical
metallic parallel plates (N = 2), it was previously shown that
μcav

QF/μsurf
QF ≈ 17 [53]. Similarly, at finite temperature, using

Eq. (20), one obtains μcav
T /μsurf

T ≈ 12.
Defining the reduced thermal wavelength λ̄th = c/ωth =

h̄c/(kBT ) (≈7.6 μm at 300 K) and λρ = 4πε0cρ, the ex-
pressions given in Eqs. (17), (26), and (27) allow for a direct
assessment of the different contributions to the viscosity co-
efficient in the low-velocity nonresonant limit. In particular,
by looking at the ratios μT /μQF and μvac

T /μT , we can pre-
cisely characterize the transition from quantum friction to the
thermal behavior given by μT and additionally from μT to
blackbody friction. For the atom-plate configuration, the tran-
sition μQF ↔ μT of the electromagnetic viscosity is described
by the quantities

vc ≡
√

2

3
π

za

λ̄th
c, λc ≡

√
3

2π2

v

c
λ̄th, Tc ≡

√
3

2π2

h̄v

kBza
,

(28a)

which are a refinement of those given in Eq. (25), confirming
our general predictions. The additional characteristic scales
for μT → μvac

T , addressing the transition to black-body fric-
tion, can be given as

�c ≡
√

2

4

[√
5

2

λρ

λ̄th

] 1
4 c

v
λc, Tc ≡ 1

4

(√
15

2π

λρ

za

) 1
3 c

v
Tc.

(28b)
We illustrate these findings in Figs. 3–6, where we compare
the numerical evaluation of the full expression for μ = F/v

[see e.g., Eq. (11)] with the asymptotic behavior given above.
As shown in Fig. 3, the quantum frictional interaction starts to
be relevant for the drag force acting on the particles only when
v > vc. At lower velocities the viscosity is instead character-
ized by μT (for sufficiently small distance we can neglect the
impact of blackbody friction). At sufficiently high velocities
(v � va ≡ ωaza) the frictional interaction enters the resonant
regime, where μ(v) suddenly increases with v [47] (see also
Sec. IV).

In Fig. 4, we depict the electromagnetic viscosity μ at
constant velocity and temperature as a function of the distance
za of the atom from the interface with the material. As ex-
pected, the quantum frictional force dominates for za < λc. In
the proximity of macroscopic surfaces comprised of common
(dissipative) materials, both the viscosities μT and μvac

T are
usually subleading. At separations larger than λc, the viscosity
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FIG. 3. Electromagnetic viscosity μ = F/v acting on an atom
moving near a surface as a function of the velocity v for con-
stant temperature T = 3 K and distance za = 5 nm. For the atom
we chose α0 = 4πε0 × 47.28 Å3 and ωa = 1.6 eV (corresponding
to a 87Rb atom) [72]. The surface is described by a Drude-
permittivity ε(ω) = 1 − ω2

p/[ω(ω + i�)] using the parameters ωp =
7.36 eV, � = 202 meV (corresponding to lead [87,88]), giving ρ =
�/[ε0ω

2
p] = 277 n� m and λρ ≈ 9.24 nm. The function μ(v) (full

red line) is normalized with respect to the asymptotic expression
for μT given in Eq. (26). At low velocity v < vc [vc ≈ 5 km/s in
this case, see Eq. (28)], the viscosity is characterized by its ther-
mal behavior, which for the chosen parameters is dominated by
μT . For v > vc, the quantum component becomes relevant and the
interaction behaves as μQF ∝ v2. The dashed black line describes
the nonresonant asymptotic behavior according to Eqs. (26) and
(27). At sufficiently high velocities, the viscosity enters the resonant
regime, visible as a sudden rise of the viscosity as a function of
v (va = ωaza ≈ 2.41 × 103vc for the chosen parameters—see also
Sec. IV).

connected to μT becomes relevant, while the effect of the
distance-independent blackbody friction occurs for za > �c,
where μvac

T /μT > 1. In Fig. 5, a similar behavior is visible
as a function of the temperature. For T < Tc, the viscosity
is dominated by the quantum fluctuations, while the thermal
effects appear at T > Tc, where μ(T ) ∼ μT ∝ T 2. At a higher
temperature T � Ta ≡ h̄ωa/kB, the interaction becomes reso-
nant and grows faster with T (see Sec. IV). In the nonresonant
regime blackbody friction would become relevant for T > Tc.

FIG. 4. Electromagnetic viscosity of an atom moving near a pla-
nar interface. The atom and the surface are described in terms of the
same parameters used in Fig. 3. The plot depicts μ = F/v [full red
line, see e.g., Eq. (9)] as a function of the distance za at a constant
temperature T = 3 K and velocity v = 12 km/s (λc ≈ 12 nm). The
viscosity is normalized with respect to the asymptotic expression μQF

given in Eq. (27). At separations za/λc < 1 the drag is essentially
due to quantum friction (horizontal dashed gray line). At distances
za/λc > 1, the electromagnetic viscosity μT ∝ T 2 becomes domi-
nant (black dashed line). Blackbody friction starts to be relevant at
separations za/�c > 1 (�c/λc ≈ 584 for the parameters given above).

FIG. 5. The viscosity μ as a function of the temperature for
an atom moving near a planar surface. The atom and the material
parameters are the same as in Fig. 3. The velocity and the distance
from the surface are kept constant: v = 12 km/s and za = 5 nm,
leading to the value Tc = 7.14 K. The value of μ(T ) (full red line)
is normalized with respect to μQF given in Eq. (27). The dashed
black line describes the asymptotic behavior according to Eqs. (26)
and (27). At T < Tc, the frictional interaction is dominated by the
quantum fluctuations of the system, while at higher temperatures
it becomes more thermal and the viscosity is described by μT . For
temperatures T � Ta (≈2.6 × 103Tc for the corresponding values),
the interaction becomes resonant and is characterized by a strong
increase as a function of temperature (see Sec. IV). Given that
Tc/Tc ≈ 6.5 × 103 for this specific case, blackbody friction is always
subleading in the nonresonant regime.

FIG. 6. Relative behavior of the electromagnetic viscosity com-
ponents μr and μt as a function of the atom-surfaces separation (top)
and the temperature (bottom). In the upper plot the temperature is
set to T = 3 K and in the lower plot the distance is za = 5 nm. In
both cases the velocity is v = 12 km/s. The atom and the surface are
described in terms of the same parameters used in Fig. 3. The plot
shows that a transition from −μr/μt ∼ 5/7 to −μr/μt ∼ 1/2 occurs
around the characteristic distance za ≈ λc (top) and temperature T ≈
Tc (bottom). For za ≈ �c, the viscosity enters the regime where μvac

T

becomes dominant. For these distances μr goes to zero and, given
that �c = 584λc for the above parameters, a decreasing of −μr/μt is
expected. As a function of the temperature, the transition to black-
body friction would instead occur around T ≈ Tc ≈ 6.5 × 103Tc.
The dashed black lines describe the asymptotic behavior predicted
according to Eqs. (26) and (27), where the contribution of blackbody
friction was neglected.
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FIG. 7. Physical character of the electromagnetic viscosity at
constant velocity as a function of distance za and temperature T .
We can clearly distinguish three regimes. (i) For small separations
or small temperatures (lower-left corner of the plot) the quantum
frictional viscosity μ ∼ μQF and the system’s quantum behavior
dominates the frictional interaction. (ii) At zaT � √

3/2h̄v/(kBπ ),
the thermal fluctuations from the material interface μT take over the
main role of interaction. (iii) Finally, for distances and temperatures
in the upper-right corner, at zaT � [(9/2)

√
10λρ/λth]1/4 h̄c/(4πkB),

blackbody friction μvac
T prevails over the surface contributions. The

full line on the left gives the (za, T ) values for which μQF = μT ,
while the full line on the right describes the case where μT = μvac

T .
For our numerical example, we use the critical velocity v = vc ≡√

2/3πkBT za/h̄ and once again the parameters given in Fig. 3.

However, for the parameters used in Fig. 5, this never occurs
because Ta < Tc.
Figure 6 depicts the ratio −μr/μt as a function of the
atom-surface separation and of the temperature for the same
parameters of Fig. 3. In general, as for the T = 0 case [51],
μt can be defined starting from Eq. (9) by retaining only the
symmetric part of the Green tensor and of the tensor in the
curly brackets. Similarly, the expression for the viscosity μr

can be derived from Eq. (9) by considering the antisymmetric
parts of the same tensors. From Eq. (21) we have then that μr

always identically vanishes if s⊥ = 0. In agreement with our
results in Eqs. (26) and (27), we observe a partial cancellation
of the two contributions to the viscosity that ranges from 70%
to 50%, corresponding to the ratio −μr/μt varying from 5/7
to 1/2. As expected, the crossover between these two values
takes place around za/λc ≈ 1 or T/Tc ≈ 1.

Finally, Fig. 7 describes the relevance of the different con-
tributions to the electromagnetic viscosity for given velocity
in the (za, T ) plane. While the quantum characteristics of the
system (μQF) are predominant for parameters in the lower-
left corner of this plane, the thermal effects start to be more
relevant in the remaining part of the plane (μT ) and eventually
recover the case of blackbody friction (μvac

T ) in the upper-right
corner.

IV. MATERIAL-MODIFIED SPECTRAL DENSITY

It is also interesting to inspect the behavior of μT from
another perspective. In the simplest case, where the particle
moves through thermal (homogeneous and isotropic) vac-
uum and no macroscopic bodies are present, we can rewrite
Eq. (15) in terms of the thermal part of Planck’s blackbody
spectrum (the zero-point fluctuations are not relevant for the
following considerations) �(ω) = h̄ω3n(ω)/(π2c3), i.e.,

μvac
T ∼ −

∫ ∞

0
dω

ωIm[αv=0(ω)]

3c2ε0
T ∂T �(ω), (29)

which can be shown to be related to Einstein and Hopf’s
original result [10,15]. At the given frequency ω, the friction
is connected to the slope of the Planck distribution T ∂T �(ω)
at temperature T , which is accounting for the Doppler shift of
the thermal field that the moving atom perceives [15]. The
resulting distribution has a maximum and a variance both
of the order of the thermal frequency ωth. Importantly, the
atom only perceives the part of the spectrum that is within
the frequency range of its interaction channels. For instance,
if we again consider a single dipole resonance [see Eq. (16)
and discussion above], the usually sharp atomic transition
acts as a filter, selecting only frequencies ω ≈ ωa. Math-
ematically, this is represented in Eq. (29) by the spectral
density kernel ηvac(ω) ≡ ω Im[αv=0(ω)]/(3c2ε0). The inter-
action is therefore determined by the kind and the strength
of the overlap between the spectral density filter and the
temperature-dependent behavior of the electromagnetic field.
The relation between the maxima and the widths of κvac(ω) vs
T ∂T �(ω) determines which of the approximations in Eqs. (16)
or (17) is the most adequate.

At low velocities, we can extend this representation to
more generic situations and write the thermal viscosity as

μT ∼ −
∫ ∞

0
dωη(ω)T ∂T �(ω). (30)

Comparing with the expression in Eq. (13), we can define the
spectral density of the joint atom + field system as

η(ω) = 2πc3

ω4

∫
dq

2π

∫
dq̃

2π
q(q − q̃)

× Tr[αv=0(ω)G�(q̃, Ra, ω)α†
v=0(ω)G�(q, Ra, ω)],

(31)

which incorporates the interaction with the material-modified
electromagnetic field up to all orders in coupling. In this
generalization, both the particle’s polarizability and the Green
tensor of the environment feature characteristic material-
dependent resonances that manifest themselves as peaks in
the behavior of η(ω), singling out certain frequencies in the
interaction with the thermal field. If the temperature is suffi-
ciently high, so that ωth is larger than the resonances’ widths
which T ∂T ρ(ω) is enclosing, the interaction is resonant and
an approximation similar to that in Eq. (16) is possible. Since
some of the resonances’ widths scale as the inverse of the
atom-surface separation, the resonant regime can also take on
greater significance for larger distances from the surface. The
higher the temperature (or the larger the distance from the sur-
face), though, the more pronounced becomes also the impact
of the blackbody radiation μvac

T which is independent from the
surfaces [see e.g., Eq. (16)]. Conversely, at low temperature,
T ∂T ρ(ω) is significantly different from zero for ω smaller
than all system’s resonances, acting as a low-frequency band-
pass filter and therefore highlighting the dissipative features
of the system. In this case the viscosity given by the integral
in Eq. (30) is in the nonresonant regime which we analyzed in
Sec. III.

To see this more clearly, let us once again consider the case
of a single-resonance polarizability for an atom moving in the
near-field of a flat surface. Also, for simplicity, we restrict our
discussion to spatially local material models [89]. In Fig. 8 we
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FIG. 8. Scaled representation of the functions composing the
integrand in Eq. (30) for the thermal viscosity. Dashed black line:
Spectral density of the atom + field system η(ω) [see Eq. (31)]
normalized to its low-frequency behavior. We again consider the
planar setup in the near field and mark the surface resonance ωsp

as well as the single atomic resonance ωa. Solid red line: T ∂T �(ω)
evaluated at room temperature divided by half its maximum value.
Depending on the chosen value of T , the peak of T ∂T �(ω) can
accentuate qualitatively different parts of the spectral density [see
main text and Eq. (30)]. Setup and parameters are chosen as in Fig. 7
and we use za = 1 nm.

sketch both the functions in the integrand of Eq. (30) for the
case of a 87Rb atom moving above a lead surface (see Fig. 4).
For a better visualization, the normalization of each curve is
different. The figure highlights that η(ω) contains resonances
for ω ≈ ωa related to the particle through its polarizability
and, if they exist, to the surface (ωsp ≈ ωp/

√
2). Examples of

the latter are surface-plasmon- and surface-phonon-polariton
resonances [47] appearing, respectively, in the case of metal-
lic or dielectric surfaces. Depending on the temperature, the
function T ∂T �(ω) selects the resonant region of η(ω) or
the dissipative low-frequency regime. This gives rise to the
resonant or the nonresonant form of frictional interaction,
respectively. For comparison, if we take room temperature as
a reference, the thermal distribution has a maximum around
5.6% of the value of the resonance frequency of the 87Rb
D line [72], substantially overlapping with the low-frequency
part of η(ω). For this specific case, one would need a temper-
ature about twenty times larger for the maximum of T ∂T �(ω)
to reach the value of the atomic transition ωa ≈ 1.6 eV or that
of the surface-plasmon resonance ωsp ≈ 5.2 eV. The frictional
viscosity μT would then be characterized by its resonant
contribution.

V. CONCLUSION

An atom propelled at constant speed v within a complex
electromagnetic environment comprised of several transla-
tionally invariant objects at temperature T experiences a force
that opposes its motion as if it were moving in a viscous
medium. The quantum and thermal fluctuations of the elec-
tromagnetic field define a privileged reference frame with
respect to which the atom tends to be at rest. In this article, we
provide a rather general, self-consistent, nonperturbative and
non-Markovian framework which is able to describe many
facets of the electromagnetic viscosity felt by the particle. It
unifies, completes and extends previous results available in the
literature, explaining the processes behind them. Depending
on the temperature, the optical response and the geometry of
its surroundings as well as the spin angular momentum of the

radiation, the perceived viscosity is characterized by different
physical phenomena.

At sufficiently low velocities and temperatures, the fric-
tional interaction is nonresonant and one can distinguish three
distinct regimes: (i) At sufficiently large distance za from any
material interface, the viscosity is dominated by the inter-
action with the thermal vacuum field. That particular limit
recovers what is known in the literature as blackbody friction.
Blackbody friction scales linear with the velocity v and the
corresponding viscosity depends on the temperature and the
parameters characterizing the atom and the electromagnetic
radiation in vacuum only. Within this regime we were able
to explain why equilibrium-based techniques involving the
local thermal equilibrium approximation lead to the correct
expression and we identified the limit of this approach. (ii)
The closer to an interface the particle moves, the more the
interaction is affected by the change in the electromagnetic
density of states due to the boundary conditions induced by
the material-induced inhomogeneity of space. At sufficiently
low velocities, large separation or high temperatures (kBT �
h̄v/λa), the frictional interaction is still mainly thermal. In
addition to the parameters determining the drag in vacuum,
the viscosity now also depends on the optical properties and
the geometry of the objects characterizing the electromagnetic
environment as well as on the position of the atom. We have
shown in this case that, at the leading order in the velocity,
independently from the geometry of the environment and for
rather typical material properties, the frictional force scales as
∝vT 2 and the corresponding viscosity as ∝T 2. Finally, (iii) in
the limit of sufficiently low temperatures or comparably short
distances or high velocities (kBT � h̄v/λa), electromagnetic
quantum fluctuations become the main source of the interac-
tion, recovering the behavior of quantum friction: Within the
nonresonant regime, the quantum drag force is ∝v3, corre-
sponding to a viscosity that scales as v2. At high temperature
or velocities, the frictional interaction becomes resonant and
gets enhanced. This regime, however, is not easy to achieve in
setups involving atoms and materials typically used in exper-
iments. Our analysis allows us to highlight the characteristic
scales and the physical mechanisms which determine the tran-
sition between these different regimes. In particular we were
able to point out that the quantum properties of the drag force
become more relevant for particles with a high kinetic energy.
We explained this result by making the connection with the
anomalous-Doppler-effect through which virtual excitations
(quantum fluctuations) can receive enough energy to turn into
real ones at the cost of the atom’s kinetic energy.

Similarly to what has already been done for zero tem-
perature [51], our formalism enabled us to identify and
characterize a contribution to the frictional processes at finite
temperature that involves the exchange of angular momentum
between the confined field in the vicinity of the material
interface and the particle. We were able to show that, in the
nonresonant regime, this contribution, independently from the
details of the geometry, diminishes the electromagnetic vis-
cosity. In the specific example of an atom moving at constant
velocity in vacuum at nonzero temperature above a planar
surface, the transfer of angular momentum turns out to reduce
the corresponding viscosity by a factor of one half (at zero
temperature the reduction was 5/7).
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From the experimental point of view, our results can be of
relevance for high-precision experiments with atoms, such as
in the design of frequency Refs. [90] or in the interpretation
of atom interferometric measurements [91], where blackbody
friction, e.g., can be connected to Stark shifts and modified
atomic lifetimes [14,92]. Especially with the advent of minia-
turization efforts in order to create portable devices of these
emerging quantum technologies [93,94], the impact of the
instrument’s boundaries starts to matter and deviations from
the simple Planck spectrum can become important [95,96].
For instance, if we take once again the simplest case of a
rubidium atom moving in front of a single lead surface (de-
scribed via the Drude model) at room temperature, the drag
connected to the interaction with the surface starts to exceed
the blackbody vacuum drag below separations of some tenths
of micrometers. From the perspective of an active detection of
the above-discussed effects, we may identify atom interferom-
etry either with cold atoms [91] or in diffraction experiments
[97,98] as a promising candidate. The latter is particularly
appealing for high velocities (of the order of 1–100 km/s [99])
and small atom-surface separations (a hundred nanometers
and thinner) already characterizing recent experiments [100].
The results and the description outlined in the present paper
provide the tools that can allow us to better understand and
possibly engineer the vacuum viscosity in the presence of
(shape-)optimized materials via advanced numerical schemes.
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APPENDIX: MATHEMATICAL DETAILS ON THE
DERIVATION OF THE FRICTIONAL FORCE

Here we provide additional information about the deriva-
tion of some of the expressions presented in the paper.

1. On the expression in Eq. (9)

We start by considering Eq. (9). Following Ref. [47], the
Lorentz force acting on the moving dipole can be written as

F (t ) = lim
r→ra (t )

2Re〈d̂(t ) · ∂xÊ⊕(r, t )〉, (A1)

where Ê⊕(r, t ) is the part of the total electric-field operator
related only to an integration over positive frequencies ω � 0.
As described in Sec. II, the electric-field operator decomposes
into two components, i.e., Ê(r, t ) = Ê0(r, t ) + Êind(r, t ), and
each of them can be split in an integration over positive and
negative frequencies Ê⊕ and Ê�, respectively. For Ê0 we can
write

Ê⊕
0 (ra(t ), t ) =

∫ ∞

0

dω

2π

∫
dq

2π
Ê0(q, Ra, ω)ei[qxa(t )−ωt],

(A2)

and from Eq. (5) we can obtain the corresponding relation for
the field induced by the dipole, Ê⊕

ind(r, t ). Accordingly, the
force (formally) in Eq. (A1) also decomposes into two parts.
In the steady-state (t → ∞), for the contribution to the force
connected to Ê⊕

0 (r, t ), we hence obtain

lim
r→ra (t )

2Re
〈
d̂(t ) · ∂xÊ⊕

0 (r, t )
〉

= 2Re
∫

dω̃

2π

∫ ∞

0

dω

2π

∫
dq

2π
(iq)

× 〈d̂(ω̃) · Ê0(q, Ra, ω)〉ei[qxa (t )−(ω+ω̃)t]eiq̃x0

= 2Re
∫

dω̃

2π

∫ ∞

0

dω

2π

∫
dq

2π

∫
dq̃

2π
(iq)e−i(ω+ω̃−qv)t

× Tr
[
αv (ω̃)

〈
Ê0(q̃, Ra, ω̃ + q̃v)ÊT

0 (q, Ra, ω)
〉]

ei(q+q̃)x0 .

(A3)

In the previous expression we used that, in the steady-state,
the atom’s trajectory is given by xa(t ) ∼ x0 + vt , where x0 is
the position where system becomes stationary. We also use
that the scalar product of two vectors a and b is identical to
the trace of the dyadic abT, i.e., a · b = Tr[abT], and that the
steady-state solution for the dynamics of the dipole operator
d̂(t ) is given by the stationary solution of Eq. (6). In the
frequency domain [see Eq. (7a)] its expression is

d̂(ω̃) = αv (ω̃)
∫

dq̃

2π
Ê0(q̃, Ra, ω̃ + q̃v)eiq̃x0 . (A4)

Since Ê0 describes the field without the atom, the dyadic
〈Ê0(q̃, Ra, ω̃ + q̃v)ÊT

0 (q, Ra, ω)〉 can be evaluated using the
fluctuation-dissipation relation in Eq. (3). Finally, we obtain

lim
r→ra (t )

2Re
〈
d̂(t ) · ∂xÊ⊕

0 (r, t )
〉

= 4h̄Re
∫ ∞

0

dω

2π

∫
dq

2π
iqn(ω)Tr

[
αv (−ω−

q )GT
�(q, Ra, ω)

]
,

(A5)

where we used that −GT
�(q, Ra, ω) = G�(−q, Ra,−ω),

n(−ω) = −[1 + n(ω)]. If we now evaluate the real part of the
expression, we arrive at

lim
r→ra (t )

2Re
〈
d̂(t ) · ∂xÊ⊕

0 (r, t )
〉

= −4h̄
∫ ∞

0

dω

2π

∫
dq

2π
qn(ω)

× Tr

[
αv (−ω−

q )GT
�(q, Ra, ω)−α∗

v (−ω−
q )G†

�(q, Ra, ω)

2i

]

= −2
h̄

π

∫ ∞

0
dω

∫
dq

2π
qn(ω)Tr

[
αv,�(−ω−

q )GT
�(q, Ra, ω)

]
,

(A6)

where we used in the second line that G�(q, Ra, ω) =
G†

�(q, Ra, ω) and that the trace of a matrix is identical to the
trace of its transpose. The previous result gives the first term
on the r.h.s of Eq. (9). The second term on the r.h.s of Eq. (9)
has been derived in earlier work [47]. Combining the two, we
arrive at Eq. (9).
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2. On the expression in Eq. (10)

Let us now derive the equivalent expression for the fric-
tional interaction presented in Eq. (10). Starting from Eq. (9),
we first substitute ω → ω + qv = ω+

q , i.e.,

F = −2
∫

dq

2π

∫ ∞

−qv

dωq Tr

[{
h̄

π
n(ω+

q )αv,�(−ω)

+ Sv (−ω)

}
GT

�(q, Ra, ω
+
q )

]
. (A7)

Second, we employ the identities αv,�(−ω) = −αT
v,�(ω) and

Sv (−ω) = ST
v (ω) − (h̄/π )αT

�(ω) to obtain

F = 2
∫

dq

2π

∫ ∞

−qv

dωq Tr

[{
h̄

π
[1 + n(ω+

q )]αT
v,�(ω)

− ST
v (ω)

}
GT

�(q, Ra, ω
+
q )

]
. (A8)

The properties of the trace operation allow us to remove the
“T” superscript in the previous expression. The only differ-
ence with respect to Eq. (10) is that the integral over the
frequencies runs from −qv instead of zero. Interestingly, how-
ever, upon substituting ω → −ω and q → −q, we have that∫

dq

2π

∫ 0

−qv

dωq Tr

[{
h̄

π
[1 + n(ω+

q )]αv,�(ω)

− Sv (ω)

}
G�(q, Ra, ω

+
q )

]

=
∫

dq

2π

∫ 0

−qv

dωq Tr

[{
h̄

π
n(ω+

q )αv,�(−ω)

+ Sv (−ω)

}
GT

�(q, Ra, ω
+
q )

]

= −
∫

dq

2π

∫ 0

−qv

dωq Tr

[{
h̄

π
[1 + n(ω+

q )]αv,�(ω)

− Sv (ω)

}
G�(q, Ra, ω

+
q )

]
. (A9)

Here, we used again the identities for the polarizability and the
power spectrum given after Eq. (A7) as well as those for the
Bose number and the Green tensor given after Eq. (10). The
above result indicates that this contribution is zero and that we
can replace the frequency integration range in Eq. (A8) from
[−qv,∞) to [0,∞), recovering Eq. (10).

3. On the expression in Eq. (11)

It is also interesting to show that the previous results can
be obtained using the symmetric ordering of operators instead
of the ordering used in the main text. Our starting point is the
Lorentz force given by Eq. (4) of the main text, written in the
symmetrized form

F (t ) = lim
r→ra

〈d̂(t ) · ∂xÊ(r, t )〉sym, (A10)

where the symmetric average is defined as

〈Â · B̂〉sym ≡ 〈Â · B̂ + B̂ · Â〉
2

= 〈ÂiB̂i + B̂iÂi〉
2

(A11)

(in the last line we implicitly summed over the repeated in-
dices). While the operator ordering is irrelevant in Eq. (A10),
this is no longer true if we consider again the splitting
Ê(r, t ) = Ê0(r, t ) + Êind(r, t ) and calculated the correspond-
ing terms independently.

We start with the contribution to the force connected to the
vacuum part of the field operator Ê0 and obtain at late times

lim
r→ra (t )

〈d̂(t ) · ∂xÊ0(r, t )〉sym

= lim
r→ra

∫
dω

2π
e−iωt 〈d̂(ω) · ∂xÊ0(r, t )〉sym

=
∫

dω

2π

∫
dω̃

2π

∫
dq̃

2π
(iq̃)e−iωt ei[q̃xa(t )−ω̃t]

× 〈d̂(ω) · Ê0(q̃, Ra, ω̃)〉sym

=
∫

dω

2π

∫
dω̃

2π

∫
dq̃

2π

∫
dq

2π
ei(q̃v−ω̃−ω)t ei(q+q̃)x0

× (iq̃)Tr
[
αv (ω)

〈
Ê0(q, Ra, ω + qv)ÊT

0 (q̃, Ra, ω̃)
〉
sym

]
.

(A12)

In the case of the dyadic product of vector operators, the
symmetric average has to be understood componentwise,
i.e., [〈ÂB̂T〉sym]i j = 〈AiBj + BjAi〉/2. In terms of the matri-
ces resulting from the dyadic product, this can be written
as 〈ÂB̂T〉sym = 〈ÂB̂T〉 + 〈B̂ÂT〉T/2. The symmetric average
of the vacuum field can be computed by replacing 2[1 +
n(ω)] → coth[h̄ω/(2kBT )] in Eq. (3). This yields

lim
r→ra (t )

〈d̂(t ) · ∂xÊ0(r, t )〉sym

= −h̄
∫

dω

2π

∫
dq

2π
(iq) coth

(
h̄ω+

q

2kBT

)

× Tr[αv (ω)G�(q, Ra, ω
+
q )]

= −h̄
∫ ∞

0

dω

2π

∫
dq

2π
(iq) coth

(
h̄ω+

q

2kBT

)

× {Tr[αv (ω) − α†
v (ω)}G�(q, Ra, ω

+
q )]

= h̄

π

∫ ∞

0
dω

∫
dq

2π
q coth

(
h̄ω+

q

2kBT

)

× Tr[αv,�(ω)G�(q, Ra, ω
+
q )]. (A13)

For the part of the force connected to Êind, we employ
Eq. (5) and use that at late times we can write

Êind(r, t ) =
∫ t−t0

−∞
dτG(r(t ), ra(t − τ ), τ )d̂(t − τ )

t,−t0→∞=
∫

dτ

∫
dω

2π

∫
dω′

2π

∫
dq

2π
G(q, Ra, ω̃)d̂(ω)

×e−i(ω̃−ω)τ−iωt eiq[x−xa (t−τ )], (A14)

where we could extend the convolution in the first line to
τ → −∞ since the Green tensor is a causal function. Upon
inserting the expression for the steady-state atom’s trajectory
xa(t ) ∼ x0 + vt into the symmetrized expression of the force,

052205-13



M. OELSCHLÄGER et al. PHYSICAL REVIEW A 106, 052205 (2022)

we obtain

lim
r→ra (t )

〈
d̂(t ) · ∂xÊind(r, t )

〉
sym ∼

∫
dτ

∫
dω

2π

∫
dω̃

2π

∫
dν

2π

∫
dq

2π
(iq)〈d̂(ν) · G(q, Ra, ω̃)d̂(ω)〉syme−i(ω̃−ω−qv)τ−i(ω+ν)t

= h̄
∫

dω

2π

∫
dq

2π

∫
dq̃

2π
(iq) coth

(
h̄ω+

q̃

2kBT

)
Tr[αv (ω)G�(q̃, Ra, ω

+
q̃ )α†

v (ω)G(q, Ra, ω
+
q )]

= h̄
∫ ∞

0

dω

2π

∫
dq

2π

∫
dq̃

2π
(iq) coth

(
h̄ω+

q̃

2kBT

)
{Tr[αv (ω)G�(q̃, Ra, ω

+
q̃ )α†

v (ω)G(q, Ra, ω
+
q )]

− Tr[α∗
v (ω)GT

�(q̃, Ra, ω
+
q̃ )αT

v (ω)G∗(q, Ra, ω
+
q )]}

= − h̄

π

∫ ∞

0
dω

∫
dq

2π

∫
dq̃

2π
q coth

(
h̄ω+

q̃

2kBT

)
Tr[αv (ω)G�(q̃, Ra, ω

+
q̃ )α†

v (ω)G�(q, Ra, ω
+
q )], (A15)

where, together with the properties of the trace operation, we used that G(−q, Ra,−ω) = G∗(q, Ra, ω) and that, simi-
larly to the electromagnetic field, the symmetric dipole correlator can be obtained by replacing in Eq. (7) n(ω+

q ) + 1 →
coth[h̄ω+

q /(2kBT )]/2. Adding Eqs. (A13) and (A15) we arrive at Eq. (11), which is equivalent to the expressions in Eqs. (9)
and (10) obtained using a different approach and ordering scheme.
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