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Abstract

Neurons, the fundamental building blocks of all information processing in living beings, are
fundamentally nonlinear elements. If a neuron receives an input signal, it produces a specific
output. However, if the neuron is subject to two signals its output may not be the sum of the
specific outputs. This constitutes a violation of superposition or, in other words, it is a sign of
nonlinearity.
In this work we show how said nonlinearity helps to describe a real life observation in weakly

electric fish, the so-called electrosensory cocktail party, which we will describe in more detail in
chapter 1 along with the mathematical framework of this thesis. Using nonlinear systems theory
and the Volterra/Wiener series we reduce the problem to the identification of the (higher order)
susceptibilities of our system – which are the sensory neurons of the weakly electric fish. The
cocktail party effect is especially alluring to us, since the sensory neurons are well described by
a leaky integrate-and-fire model with spike-frequency adaptation. For the nonadapting leaky
integrate-and-fire neuron we will explore an analytical calculation in chapter 2 which closely
follows a previous calculation in Ref. [1, 2].
Then, in chapter 3, we investigate the dependency of the susceptibilities on internal and

external parameters of our system. More specifically we will see that the susceptibilities are
dependent on the noise that is intrinsic to the neuron as well as to the signal noise.
In chapter 4 we finally introduce the adapting leaky integrate-and-fire model and explore the

effects of the adaptation on the firing of the neuron. We find an approximation for which we
can analytically calculate the first and second order susceptibilities and show that the results
fit well to simulations.
chapter 5 lays out more details on the simulations we performed in the thesis and chapter 6

closes it with a critical discussion of this work.
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Zusammenfassung

Neuronen sind, als die kleinsten informationsverarbeitenden Einheiten in Lebenwesen fun-
damental nichtlineare Elemente. Wenn ein Neuron ein Eingangssignal empfängt, erzeugt es
ein spezifisches Ausgangssignal. Wenn es allerdings die Summe aus zwei Eingangssignalen
empfängt, dann ist das Ausgangssignal im Allgemeinen nicht gleich der Summe der spezifis-
chen Ausgangssignale. Wir erkennen hierin eine Verletzung des Superpositionsprinzips oder,
anders gesagt, ein Zeichen für Nichtlinearität.
In dieser Arbeit zeigen wir wie die genannte Nichtlinearität bei der Beschreibung eines

beobachtetes Phänomen in schwach elektrischen Fischen, der sogenannten elektrosensorischen
Cocktailparty die wir in Kapitel 1 einführen, helfen kann. Mit Hilfe der Theorie nichtlinearer
Systeme und der Volterra- bzw. Wienerreihe reduzieren wir das Problem auf die Identifikation
der Suszeptibilitäten unseres Systems (den sensorischen Neuronen des schwach elektrischen
Fisches). Der Cocktailpartyeffekt ist für uns von besonderem Interesse, da die sensorischen
Neuronen sehr gut durch ein sogenanntes Leckintegratormodell mit stochastischer Adaption
beschrieben werden können. Für das Leckintegratormodell ohne Adaption werden wir analytis-
che Ausdrücke in Kapitel 2 berechnen, deren Herleitung sich sehr stark an [1, 2] hält.
In Kapitel 3 werden wir die Abhängigkeit der Suszeptibilitäten von systeminternen und -

externen Parametern untersuchen. Spezifischer, werden wir sehen, dass die Suszeptibilitäten
von einer Kombination aus intrinsischem und extrinsischen Rauschen abhängen.
In Kapitel 4 führen wir dann das Leckintegratormodell mit stochastischer Adaption ein und

erkunden die Effekte der Adaption auf das Feuern des Neurons. Wir werden eine Approximation
finden die uns erlaubt analytische Ausdrücke für die Suszeptibilität erster und zweiter Ordnung
zu finden und wir zeigen, dass diese Ergebnisse sich mit Simulationen decken.
In Kapitel 5 legen wir Details über die durchgeführten Simulationen dar und in Kapitel 6

beenden wir die Arbeit mit einer kritischen Diskussion.
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CHAPTER 1

Introduction

We present the problem at hand, the cocktail party of weakly electric fish, and specify its
intriguing properties. From there we abstract our problem and formulate it anew using
nonlinear response theory, where we introduce the most important quantities of this thesis
– the (higher order) susceptibilities.

1.1 The electrosensory cocktail party

Gymnotiforms are weakly electric fish that can generate an electric field by discharging an
electric organ, which is usually found in the tail of the fish. For the species Apteronotus albifrons
the generated field is of approximately dipolar structure, quasisinusoidal and in the frequency
range of 800-1300Hz [3, 4]. The electric field is disturbed by any surrounding objects (rocks,
plants) and other fish. Disturbances of the electric field are picked up by sensory neurons, which
allows preying, navigation and communication with other fish. In a communication scenario
two fish are within a certain detection range (which in the case of A. rostratus is around 1.5m
[5]), outside of which the signal of either fish is too weak to be detected. Their electric organ
discharges (EOD) overlap, causing an amplitude modulation. This amplitude modulation is
picked up by receptors called P-units (probability units), which encode these modulations,
meaning that they are more likely to fire if there is a higher amplitude modulation. However,
the modulation has to be strong enough to be successfully encoded by the P-unit [6] and there
is also a tuning phenomenon, meaning there is a prefered range of frequencies that the P-unit
detects. The spiking activity of the P-units is well described by a leaky integrate-and-fire
neuron with spike frequency adaptation [6–10] (see chapter 4 for more details on the model).
In [5, 11] they observed an interesting communication scenario involving three fish. A male

fish (called the resident) courting a female fish can detect another male fish (called the intruder)
at distances that are close to the detection range. This is somewhat stunning, since one expects
that a closeby signal would jam the detection of other, especially weak, signals. The described
phenomenon is similar to the so-called cocktail party problem, which deals with the question:
How can the auditory system segragate a signal (the words of a conversation partner) from
distracting background sounds (the party)? [12] Therefore our problem is: how can the resident
male fish segregate the signal of an intruding male fish, while it is influenced by the signal of a
closeby female fish?
Previous works consider the nonlinear response of the leaky integrate-and-fire model together

with two input signals [1, 2]. They have shown significant enhancements that can not be
explained using linear response. However, they do not consider spike-frequency adaptation,
which e.g. has been considered in [13, 14]. In this work we strive to combine the results of
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1 Introduction

these works to obtain a theory for the nonlinear reponse in an adapting leaky integrate-and-fire
model.

Figure 1.1: Black box. We consider an unknown system that takes some time dependent
input signal x(t) and produces an output signal y(t).

1.2 Nonlinear systems

We may abstract the fish as a nonlinear system that receives some time dependent input signal
x(t) and produces an, also time varying, output signal y(t). It is therefore essentially a black
box that is fully determined by its response to the inputs. In mathematical terms we can model
such a system using the so-called Volterra series [15]

y(t) = H0[h0, x(t)] +H1[h1, x(t)] +H2[h2, x(t)] + · · ·+Hn[hn, x(t)]

= h0 +
∫ ∞

0
dτh1(τ)x(t− τ)

+
∫ ∞

0
dτ1

∫ ∞
0

dτ2h2(τ1, τ2)x(t− τ1)x(t− τ2)

+ . . .

+
∫ ∞

0
dτ1· · ·

∫ ∞
0

dτnhn(τ1, . . . , τn)
n∏
i=1

x(t− τi) (1.1)

where hi {i : i ∈ [0, n]} are the Volterra kernels of ith order and we show a finite Volterra series,
but we could also choose infinitely many terms. Knowing all kernels in the Volterra series
completely determines the output for a given input. However, there are two new problems
that we have to face now. The first is: how many terms do we need? Does the linear order
suffice? Do we need infinitely many? We can not answer this question in general, however, in
our case we stipulate that the signal is such that we can accurately describe the output using
the first three terms of the Volterra series (i.e. zeroth, first and second order). This brings us
to the next problem: how do we quantify the kernels? Again, in general this is a hard problem,
because (considering only the first three terms) we would have to solve a nonlinear integral
equation. There is, however, a way in which we can make progress. A fundamental problem of
the Volterra series is, that its terms are not mutually orthogonal with respect to white gaussian
noise. Let us consider white gaussian noise with variance A as our input signal and let us
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Nonlinear systems 1.2

consider the average of the second order term. This results in

〈H2[h2, x(t)]〉 = A

∫ ∞
0

dτh2(τ, τ), (1.2)

which is a zeroth order term! We can extend this observation for even higher orders and see that
higher order terms contain lower order contributions, leading to a correlation of the different
orders. A remedy for this problem has been found by Wiener [16] and is called the Wiener
series. It considers as an input a gaussian white noise with variance A and simply substracts
the lower order terms that have been causing the correlation from before

y(t) = G0[h0, x(t)] +G1[h1, x(t)] +G2[h2, x(t)] +G3[h3, x(t)] + . . .

= g0 +
∫ ∞

0
dτg1(τ)x(t− τ)

+
∫ ∞

0
dτ1

∫ ∞
0

dτ2g2(τ1, τ2)x(t− τ1)x(t− τ2)−A
∫ ∞

0
dτg2(τ, τ)

+
∫ ∞

0
dτ1

∫ ∞
0

dτ2

∫ ∞
0

dτ3g3(τ1, τ2, τ3)x(t− τ1)x(t− τ2)x(t− τ3)

− 3A
∫ ∞

0
dτg3(τ, τ, t)x(t− τ)

+ . . . (1.3)

Here we have only shown the first four terms and we have denoted the Wiener kernels with
gi {i : i ∈ [0, n]}. Our initial problem was, however, that the measurement of the Volterra
kernels is a hard problem. How does the construction of the Wiener series help us? There
is a standard way due to Lee and Schetzen [17] that allows an easy (numerical) measurement
of the Wiener kernels which is called the cross correlation method. Using this scheme we can
easily identify the Wiener kernels. To obtain the appropriate Volterra kernel we then have
to use Wiener-to-Volterra formulae [18]. Let us consider a second order Volterra and Wiener
series. We set both series equal, since the output y(t) does not depend on the representation
we choose. Then we compare each term and we can identify

h0 = g0 −A
∫ ∞

0
dτg2(τ, τ) (1.4)

h1(τ) = g1(τ) (1.5)
h2(τ1, τ2) = g2(τ1, τ2). (1.6)

In this scenario, only the static (i.e. the zeroth order) term changes depending on the repre-
sentation we choose.

Later on we will often work with the Fourier transform of the Wiener or Volterra series,
which involves the Fourier transforms of the kernels, which are called susceptibilities and – for
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1 Introduction

the lowest two orders – are defined as follows

χ1(ω) =
∫ ∞
−∞

dτeiωτg1(τ) (1.7)

χ2(ω1, ω2) =
∫ ∞
−∞

dτ1e
iω1τ1

∫ ∞
−∞

dτ2 e
iω2τ2g2(τ1, τ2), (1.8)

which are of course Wiener susceptibilities. For the Volterra susceptibilities simply replace g
with h in the above expressions. Notice that in this thesis we use the following Fourier transform
convention

f(ω) =
∫ ∞
−∞

dtf(t)eiωt (1.9)

f(t) =
∫ ∞
−∞

dω

2π f(ω)e−iωt. (1.10)

Using this convention the Wiener series up to second order reads

r(ω) =
(

2πr0 − 2πA
∫
dω′χ2(ω′,−ω′)

)
δ(ω) + χ1(ω)s(ω)

+ 1
2π

∫
dω′χ2(ω − ω′, ω′)s(ω − ω′)s(ω′). (1.11)

As we can see the static response is encoded by a delta function at ω = 0 which, at first glance,
seems problematic. However, it simply represents the fact that we considered the Fourier
transform of a nonzero average quantity and can therefore be removed by considering a scaled
version of the firing rate. In the Fourier domain the linear response becomes a simple product,
while the second order response still involves an integral. This makes calculations involving
higher orders hard, which we will see in chapter 4.
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CHAPTER 2

Second order susceptibility of general
integrate-and-fire neurons

We calculate the first and second order susceptibility for a general integrate-and-fire neuron.
A calculation for the specific case of a leaky integrate-and-fire neuron has already been
performed in [1, 2] and will serve firstly as the outline for our calculation and secondly as
a consistency check.

2.1 Fokker-Planck-Equation and Ansatz

We inspect a general integrate-and-fire neuron, which obeys the following dynamics

τ v̇ = f(v) + εs(t) +
√

2Dξ(t), (2.1)

where v is the membrane voltage, τ is the membrane time constant, εs(t) is an input signal,
D is the noise intensity and ξ(t) is gaussian white noise. Additionally we impose a fire-and-
reset rule: if the voltage crosses a threshold v > vt we it to a reset value v = vr after some
refractory period τref . If we choose a certain integrate-and-fire neuron we have to specify the
drift dynamic, e.g. f(v) = µ for the perfect integrate-and-fire and f(v) = µ − v for the leaky
integrate-and-fire. An equivalent formulation of the Langevin-type equation for the membrane
voltage above is the Fokker-Planck-equation (FPE) for the probability density which in our
case reads

∂tp(v, t) = ∂v(−f(v) +D∂v)︸ ︷︷ ︸
:=L̂0

p(v, t)− εs(t)∂vp(v, t) + r(t− τref )δ(v − vr). (2.2)

Additionally we have boundary and normalization conditions

p(vt, t) = 0 absorbing boundary at vt (2.3)
−D∂vp(v, t)|v=vt = r(t) absorbing boundary at vt (2.4)

lim
v→−∞

p(v, t) = 0 natural boundary at −∞ (2.5)

lim
∆v→0

p(vr + ∆v, t)− p(vr −∆v, t) = 0 continuity at vr (2.6)∫ vt

−∞
dvp(v, t) +

∫ t

t−τref
dt′r(t′) = 1 normalization (2.7)

5



2 Second order susceptibility of general integrate-and-fire neurons

The last term appearing in the FPE may also be modeled as another boundary condition at vr

−D∂vp(v, t)|v=vr = r(t− τref ). (2.8)

We now want to investigate the influence of a weak input signal. Since we are interested in the
second order response we may assume that the input signal is such that, besides the first order,
we need to specify the second order in the Volterra series for the firing rate, which now reads

r(t) = r0 +
∫
dt1h1(t1)s(t− t1) +

∫
dt1

∫
dt2h2(t1, t2)s(t− t1)s(t− t2). (2.9)

To obtain the expressions for the susceptibilities we have to insert a specific signal s(t) into
this Volterra series in order to get an ansatz for the firing rate that we will insert into the FPE.
Such a signal has to probe the whole frequency range of the system, so we choose the sum of
two cosine functions [1, 2]

s(t) = α cos(ω1t) + β cos(ω2t+ ϕ). (2.10)

Inserting the signal into the Volterra expansion of the firing rate (2.9) and using the definition
of the susceptibilities (1.7) and (1.8) results in

r(t) = r0 + ε

2

(
αχ1(ω1)e−iω1t + βχ1(ω2)e−iω2te−iϕ + c.c.

)
+ ε2

2

(
α2χ2(ω1,−ω1) + β2χ2(ω2,−ω2)

)
+ ε2

4

(
α2χ2(ω1, ω1)e−i2ω1t + β2χ2(ω2, ω2)e−i2ω2te−i2ϕ + c.c.

)
+ ε2αβ

2

(
χ2(ω1, ω2)e−i(ω1+ω2)te−iϕ + χ2(ω1,−ω2)e−i(ω1−ω2)teiϕ + c.c.

)
, (2.11)

where c.c. denotes the complex conjugate. We choose the above expression for the firing rate
as an ansatz for solving the FPE and choose an analogous ansatz for the probability density

p(v, t) = p0(v) + ε

2

(
αp1(v, ω1)e−iω1t + βp1(v, ω2)e−iω2te−iϕ + c.c.

)
+ ε2

2

(
α2p2(v, ω1,−ω1) + β2p2(v, ω2,−ω2)

)
+ ε2

4

(
α2p2(v, ω1, ω1)e−i2ω1t + β2p2(v, ω2, ω2)e−i2ω2te−i2ϕ + c.c.

)
+ ε2αβ

2

(
p2(v, ω1, ω2)e−i(ω1+ω2)te−iϕ + p2(v, ω1,−ω2)e−i(ω1−ω2)teiϕ + c.c.

)
. (2.12)

6



Stationary case 2.2

Inserting (2.11) and (2.12) into the FPE, we may sort out the terms in order of ε and stipulate
that they all individually vanish. This results in the following hierarchy of equations

0 = L̂0p0(v) + r0δ(v − vr) (2.13)
0 = (L̂0 + iω)p1(v, ω)− ∂vp0(v) + χ1(ω)eiωτref δ(v − vr) (2.14)

0 =
(
L̂0 + i(ω1 + ω2)

)
p2(v, ω1, ω2) + χ2(ω1, ω2)ei(ω1+ω2)τref δ(v − vr)

− 1
2
(
∂vp1(v, ω1) + ∂vp1(v, ω2)

)
. (2.15)

Inserting the ansatz into the boundary conditions yields

p0,1,2(vt) = 0 absorbing at vt (2.16)

−D∂vpk(v)|v=vt =

r0, k = 0
χk, k = 1, 2

absorbing at vt (2.17)

lim
v→−∞

p0,1,2(v) = 0 natural at −∞ (2.18)

lim
∆v→0

p0,1,2(vr + ∆v)− p0,1,2(vr −∆v) = 0 continuity at vr (2.19)

Let us note that the lower order probability densities appear as inhomogenities in the higher
order equations, prompting us to solve the hierarchy from low to high.

2.2 Stationary case

In the stationary case we have to solve

0 = L̂0p0(v) + r0δ(v − vr) (2.20)

We will follow the calculation performed in [19], which also introduces the notation L̂0 =
∂v(−f(v) + D∂v) = ∂v(U ′(v) + D∂v). The ordinary differential equation can be solved by
using the method of variation of the constant – after employing all the boundary conditions
the solution reads

p0(v) = r0
D
e−

U(v)
D

∫ vt

v
dv′e

U(v′)
D θ(v′ − vr). (2.21)

There is one more unknown quantity, the stationary firing rate r0 which has to be obtained via
the normalization condition, resulting in

r0 = D

(
τrefD +

∫ vt

vr

dv1e
U(v1)
D

∫ v1

−∞
dv2e

−U(v2)
D

)−1

(2.22)

For certain potentials U(v) the above expressions can be significantly simplified and result in
known expressions, see table 2.1. However, it is worth stressing at this point that the above
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2 Second order susceptibility of general integrate-and-fire neurons

formulae are closed solutions to the problem and even in cases where we can’t further simplify
the expressions they lend themselves to an easy numerical treatment.

U(v) r−1
0

perfect −µv τref + vt−vr
µ

leaky (v−µ)2

2 τref +
√
π
∫ µ−vt√

2D
µ−vr√

2D
dzez

2erfc(z)

Table 2.1: Stationary firing rate and probability density of the perfect and leaky integrate-
and-fire models

2.3 Green’s function and higher order equations

For the first order equation (2.14) we have to solve

0 = (L̂0 + iω)p1(v, ω)− ∂vp0(v) + χ1(ω)eiωτref δ(v − vr) (2.23)

with the appropriate boundary conditions. We will solve it by using the Green’s function
formalism. Let us define the Green’s function G(v, vr) via:

(L̂0 + iω)G(v, vr) = −δ(v − vr), (2.24)

where we have dropped the frequency argument for better readability. We may then find a
general solution for our equation of the following form

p1(v, ω) =
∫ vt

−∞
dv′G(v, v′)

(
−
[
∂vp0(v)

]
v=v′ + χ1(ω)eiωτref δ(v′ − vr)

)
= G(v, vr)χ1(ω)eiωτref −

∫ vt

−∞
dv′G(v, v′)

[
∂vp0(v)

]
v=v′ (2.25)

We will also apply this formalism to the second order equation (2.15), since it is of the same
functional form as (2.14). The solution for the second order equation reads

p2(v, ω1, ω2) =
∫ vt

−∞
dv′G(v, v′)

(
−1

2
[
∂vp1(v, ω1) + ∂vp1(v, ω2)

]
v=v′

+ χ2(ω1, ω2)ei(ω1+ω2)τref δ(v′ − vr)
)

= G(v, vr)χ2(ω1, ω2)ei(ω1+ω2)τref

− 1
2

∫ vt

−∞
dv′G(v, v′)

[
∂vp1(v, ω1) + ∂vp1(v, ω2)

]
v=v′ (2.26)
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Green’s function and higher order equations 2.3

It is now evident that we have to calculate the Green’s function to obtain solutions for the
probability densities. Let us procede to do so by introducing an auxiliary function q(v, vr) via

G(v, vr) = exp
[
−U(v)− U(vr)

2D

]
q(v, vr) := e−(v)q(v, vr), (2.27)

which has to fulfill [
U ′′

2 −
(U ′)2

4D + iω

]
q +Dq′′ = −δ(v − vr). (2.28)

We introduced this function to get rid of the first order derivative that would otherwise appear.
We may exclude the δ-function by solving the equation in the domain left and right of vr and
state that the first derivative has a jump at vr. Let us denote the solution for v < vr with ql(v)
and the solution for v > vr with qr(v). All boundary conditions can then be summarized as

qr(vt) = 0 (2.29)
lim

v→−∞
ql(v) = 0 (2.30)

ql(vr) = qr(vr) (2.31)
q′r(vr)− q′l(vr) = −1/D (2.32)

Generally, since this is an ordinary differential equation of second order, we have two indepen-
dent solutions q1(v), q2(v), so two parameters that have to be determined from the boundary
conditions. Let us first of all note that due to Abel’s identity we have

q1(v)q′2(v)− q′1(v)q2(v) = C := 1,∀v, (2.33)

where we set the appearing constant to 1, all other constants will then be scaled accordingly.
We may also assume that one of these solutions shows the behavior lim

v→−∞
q1(v) = 0. We then

make the following ansatz for the solutions left and right of vr

ql(v) = C1q1(v) + C2q2(v) (2.34)
qr(v) = C3q1(v) + C4q2(v). (2.35)

We exploit the boundary conditions to determine the free constants and put the left and right
solution together so that our result is

q(v) = 1
Dq1(vt)


[
q2(vt)q1(vr)− q2(vr)q1(vt)

]
q1(v), v < vr

q1(vr)
[
q2(vt)q1(v)− q1(vt)q2(v)

]
, v > vr

(2.36)

which results in a fully determined expression for our Green’s function.
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2 Second order susceptibility of general integrate-and-fire neurons

2.4 Expressions for the higher order susceptibilities

To obtain expressions for the higher order susceptibilities we have to evaluate the boundary
condition at vt

χ1(ω) = −D∂vp1(v, ω)|v=vt (2.37)
χ2(ω1, ω2) = −D∂vp2(v, ω1, ω2)|v=vt (2.38)

which, using that

∂vG(v, vr)|v=vt = − exp
[
−U(vt)− U(vr)

2D

]
q1(vr)
Dq1(vt)

(2.39)

results in

χ1(ω) = −

∫ vt
−∞ dvp

′
0(v) exp

[
−U(vt)−U(v)

2D

]
q1(v)

q1(vt)− eiωτref exp
[
−U(vt)−U(vr)

2D

]
q1(vr)

(2.40)

χ2(ω1, ω2) = −1
2

∫ vt
−∞ dv

(
p′1(v, ω1) + p′1(v, ω2)

)
exp

[
−U(vt)−U(v)

2D

]
q1(v, ω1 + ω2)

q1(vt, ω1 + ω2)− eiωτref exp
[
−U(vt)−U(vr)

2D

]
q1(vr, ω1 + ω2)

. (2.41)

We stress at this point that the above expressions are closed form statements of the first
and second order susceptibilities for a general integrate-and-fire neuron. They involve nested
functions that can all be fundamentally reduced to knowing two functions: the potential U(v)
and the solutions q1(v), q2(v) to the differential equation (2.42). All that is left to do in the
specific case is to solve the differential equation[

U ′′

2 −
(U ′)2

4D + iω

]
q +Dq′′ = 0. (2.42)

We show some analytical solutions in fig. 2.1. We note that for a general integrate-and-fire

U(v) q1(v) q2(v)

−µv exp
[
v
√

µ2

4D2 − iω
D

]
exp

[
−v
√

µ2

4D2 − iω
D

]
(v−µ)2

2 Diω
(
v−µ√
D

)
Diω

(
−v−µ√

D

)
Figure 2.1: Analytical solutions to (2.42) for common integrate-and-fire models.

neuron the integrals in (2.40) and (2.41) can not be simplified further, generally prompting a
numerical treatment. However, in the following we will show for the leaky integrate-and-fire
neuron that the expressions can be simplified dramatically.
In the case of the leaky integrate-and-fire neuron we have U(v) = (v−µ)2

2 and the differential

10



Expressions for the higher order susceptibilities 2.4

equation (2.42) has the solutions

q1(v) = Diω(v − µ√
D

) (2.43)

q2(v) = Diω(v − µ√
D

). (2.44)

We introduce the function

f(v) = exp
[
U(v)− U(vt)

2D

]
q1(v) = exp

[
(v − µ)2 − (vt − µ)2

2D

]
Diω

(
µ− v
D

)
, (2.45)

which obeys the differential equation

Df ′′ + (v − µ)f ′ + iωf = 0. (2.46)

We can use this together with partial integration and the appropriate boundary conditions to
simplify the integrals to∫ vt

−∞
dvp′0(v)f(v) = r0

1− iω

(
f ′(vr, ω)− f ′(vt, ω)

)
(2.47)

and∫ vt

−∞
dvp′1(v, ω)f(v, ω1 + ω2) = 1

1 + i(ω − ω1 − ω2)

[
χ1(ω)

(
f ′(vr, ω1 + ω2)eiω1τr

−f ′(vt, ω1 + ω2)
)

+ r0
2− i(ω1 + ω2)

(
f ′′(vr, ω)− f ′′(vt, ω)

)]
.

(2.48)

We may then utilize properties of the parabolic cylinder functions to simplify the derivatives
of f

∂vf(v, ω) = exp
[

(v − µ)2 − (vt − µ)2

2D

]
Diω−1

(
µ− v
D

)
(−iω)√
D

(2.49)

∂2
vf(v, ω) = exp

[
(v − µ)2 − (vt − µ)2

2D

]
Diω−2

(
µ− v
D

)
(−iω)(−iω − 1)

D
(2.50)
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2 Second order susceptibility of general integrate-and-fire neurons

to bring the results for the susceptibilities into their final form

χ1(ω) = r0
iω/
√
D

iω − 1
Diω−1(µ−vt√

D
)− e∆Diω−1(µ−vr√

D
)

Diω(µ−vt√
D

)− e∆eiωτrefDiω(µ−vr√
D

)
(2.51)

χ2(ω1, ω2) = r0
(1− iω1 − iω2)(iω1 + iω2)

2D(iω1 − 1)(iω2 − 1)
Diω1+iω2−2(µ−vt√

D
)− e∆Diω1+iω2−2(µ−vr√

D
)

Diω1+iω2(µ−vt√
D

)− e∆ei(ω1+ω2)τrefDiω1+iω2(µ−vr√
D

)

+ iω1 + iω2

2
√
D

(
χ1(ω1)
iω2−1 + χ1(ω2)

iω1−1

)
Diω1+iω2−1(µ−vt√

D
)

Diω1+iω2(µ−vt√
D

)− e∆ei(ω1+ω2)τrefDiω1+iω2(µ−vr√
D

)

− iω1 + iω2

2
√
D

(
χ1(ω1)eiω1τref

iω2−1 + χ1(ω2)eiω2τref

iω1−1

)
e∆Diω1+iω2−1(µ−vt√

D
)

Diω1+iω2(µ−vt√
D

)− e∆ei(ω1+ω2)τrefDiω1+iω2(µ−vr√
D

)
, (2.52)

where ∆ = [v2
r + v2

t + 2µ(vt − vr)]/(4D). The linear susceptibility is consistent with [20, 21]
and the second order susceptibility was already obtained in [1, 2] through essentially the same
calculation, however they consider the specific case of a leaky integrate-and-fire neuron, where
we started from expressions for a general integrate-and-fire neuron.
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Figure 2.2: Second order susceptibility of the LIF. We show the absolute value
(top row) and complex angle (bottom row) of the second order susceptibility of a leaky
integrate-and-fire neuron (LIF). On the left side we show data that has been obtained using
the measurement scheme presented in chapter 3 and on the right side we calculated the
second order susceptibility using (2.52). Parameters: µ = 1.1, D = 10−3, T = 100,∆t =
5 · 10−3, N = 105.
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CHAPTER 3

Measurement of higher order susceptibilities in
integrate-and-fire models

To give a contrast to the analytic calculations in chapter 2 we will show how to numerically
measure (higher order) susceptibilities for an integrate-and-fire model. The presented
formalism may be used for all neuronic black box systems and will provide us with a
numeric scheme with which we may show the fitness of our analytic solutions. Furthermore
we will clarify the dependence of the susceptibilities on internal parameters such as the
noise intensity.

3.1 Higher order susceptibilities are higher order spectra

In the last chapter we have seen how to analytically calculate the susceptibilities for general
integrate-and-fire models. We now want to present a simulation scheme with which we can
identify the susceptibilities, allowing us to compare our analytic predictions with numerical
measurement. The central object of our scheme is a black box, as it is often used in the field
of system identification. In our case the black box is a neuronic one, i.e. its time dependent
input s(t) will be some sort of electric signal and its time dependent output will be the spike
train x(t) =

∑
i δ(t − ti) with the spike times {ti : i ∈ N}. An advantage of considering such

Figure 3.1: Neuron black box. We consider an unknown neuronic system that takes
some time dependent input signal s(t) and produces a spike train x(t) with spike times ti.

a neuronic black box is that we are not restricted to integrate-and-fire models with or without
adaptation. We are striving for a measurement scheme where we can probe the whole frequency
range of the susceptibilities. Evidently, this can not be achieved with a single cosine signal for
example, because such a signal would only probe our system at a single frequency. A sum of
cosine signals would be a more promising idea, but it would still only probe the system at a
discrete set of frequencies. We therefore choose as our input signal s(t) gaussian white noise
with variance A

〈s(t)〉 = 0, 〈s(t)s(t′)〉 = Aδ(t− t′), (3.1)
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Higher order susceptibilities are higher order spectra 3.1

which broadly excites all frequencies equally. The key to obtaining formulae for the suscep-
tibilities is to investigate the input-output correlation statistics in Fourier space, namely the
power- and cross spectra which we define as follows

〈x(ω1)s∗(ω2)〉 = 2πSxs(ω1)δ(ω1 − ω2) (3.2)
〈x(ω1)s(ω2)〉 = 2πSxs(ω1)δ(ω1 + ω2) (3.3)
〈s(ω1)s∗(ω2)〉 = 2πAδ(ω1 − ω2) (3.4)
〈s(ω1)s(ω2)〉 = 2πAδ(ω1 + ω2) (3.5)

〈x(ω1)s∗(ω2)s∗(ω3)〉 = 2πSxss(ω2, ω3)δ(ω1 − ω2 − ω3). (3.6)

First, for the first order susceptibility, we take a look at the cross spectrum (3.2). The average
in (3.2) considers the internal degress of freedom (which we will denote by a subscript ξ) as
well as the degrees of freedom of the signal (denoted by a subscript s). The internal degrees of
freedom correspond to the noise of the black box itself, whereas the degrees of freedom of the
signal correspond to different realizations of a – potentially stochastic – input signal. Carrying
out the average over all internal degrees of freedom (denoted by the subscript ξ) results in

〈x(ω1)s∗(ω2)〉 = 〈〈x(ω1)s∗(ω2)〉ξ〉s = 〈r(ω1)s∗(ω2)〉s. (3.7)

Now we can insert the firing rate, where we choose the Wiener series up to second order (1.11),
which yields (we drop the subscript s in the averaging brackets)

〈r(ω1)s∗(ω2)〉 = 〈

(2πr0 − 2πA
∫
dω′χ2(ω′,−ω′)

)
δ(ω1) + χ1(ω1)s(ω1)

+ 1
2π

∫
dω′χ2(ω1 − ω′, ω′)s(ω1 − ω′)s(ω′)

]
s∗(ω2)〉

=
(

2πr0 − 2πA
∫
dω′χ2(ω′,−ω′)

)
δ(ω1)〈s∗(ω2)〉+ χ1(ω1)〈s(ω1)s∗(ω2)〉

+ 1
2π

∫
dω′χ2(ω1 − ω′, ω′)〈s(ω1 − ω′)s(ω′)s∗(ω1)〉

= χ1(ω1)2πAδ(ω1 − ω2). (3.8)

We have used the fact that all odd correlation functions of a gaussian signal vanish. By
comparing (3.8) with the definition (3.2) we can identify

χ1(ω) = Sxs(ω)
A

. (3.9)

For the second order susceptibility we have to investigate the higher order cross spectrum (3.6).
We again average over all internal degrees of freedom and insert the Wiener series for the firing
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3 Measurement of higher order susceptibilities in integrate-and-fire models

rate up to second order

〈r(ω1)s∗(ω2)s∗(ω3)〉 = 〈

(2πr0δ(ω1)− 2πA
∫
dωχ2(ω,−ω)

)
δ(ω1) + χ1(ω1)s(ω1)

+ 1
2π

∫
dωχ2(ω1 − ω, ω)s(ω1 − ω)s(ω)

]
s∗(ω2)s∗(ω3)〉

=
(

2πr0δ(ω1)− 2πA
∫
dωχ2(ω,−ω)

)
δ(ω1)〈s∗(ω2)s∗(ω3)〉

+ χ1(ω1)〈s∗(ω1)s∗(ω2)s∗(ω3)〉

+ 1
2π

∫
dωχ2(ω1 − ω, ω)〈s(ω1 − ω)s(ω)s∗(ω2)s∗(ω3)〉. (3.10)

Again, the three point function vanishes and we can simplify the four point function as follows

〈s(ω1 − ω)s(ω)s∗(ω2)s∗(ω3)〉 = 〈s(ω1 − ω)s(ω)〉〈s∗(ω2)s∗(ω3)〉
+ 〈s(ω1 − ω)s∗(ω2)〉〈s(ω)s∗(ω3)〉
+ 〈s(ω1 − ω)s∗(ω3)〉〈s(ω)s∗(ω2)〉
= 4π2A2 [δ(ω1)δ(ω2 + ω3) + δ(ω1 − ω − ω2)δ(ω − ω3)
+ δ(ω1 − ω − ω3)δ(ω − ω2)

]
. (3.11)

The cross spectrum then reads

〈x(ω1)s∗(ω2)s∗(ω3)〉 = 2πδ(ω1 − ω2 − ω3)
(
r0Aδ(ω2 + ω3) + 2A2χ2(ω2, ω3)

)
, (3.12)

which, after rearranging, yields the following expression for the second order susceptibility

χ2(ω1, ω2) = Sxss(ω1, ω2)
2A2 − r0

2Aδ(ω1 + ω2). (3.13)

The delta function in this expression seems kind of troublesome, but we can explain its origin.
It comes about the same way as the delta function in (1.11) – due to a nonzero average before
Fourier transforming. The two expressions (3.9) and (3.13) have already been obtained using a
different calculation by [22] for a general black box system. They consider the Fourier transform
of the Lee-Schetzen-formulae, reaching the same result as we have.
Both expressions lend themselves to a simple numerical treatment. In a simulation one per-

forms the steps shown in fig. 3.2. For more detailed numerical insights see chapter 5. The pre-
sented procedure of inserting a higher order Wiener series for the firing rate into a higher order
cross spectrum can be advanced further to yield the third, fourth (and so on) order susceptibil-
ities. We have to stress at this point, that the obtained quantities are Wiener susceptibilities.
To obtain the corresponding Volterra susceptibilities, one has to use the Wiener-to-Volterra
formulae presented in chapter 1.
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Parameter dependence of first order susceptibilities 3.2

Figure 3.2: Simulation scheme. We generate a gaussian white noise input signal s(t)
with variance A. Then we record the output x(t). We use a fast Fourier transform (FFT)
to obtain s(ω) and x(ω). Then we use (3.9) and (3.13) to obtain the susceptibilities.

3.2 Parameter dependence of first order susceptibilities

This section closely follows a calculation performed in [19]. In the last section we derived
formulae for the measurement of the susceptibilities, where we always explicitly denoted their
frequency dependence, χ1(ω), χ2(ω1, ω2). They, however, do not only depend on the frequency,
but also on the internal parameters of the system – in the case of integrate-and-fire models the
internal parameters are the mean input current µ and the noise intensity D. If we now apply
a white noise signal as proposed in the last section, this begs the following question: Do the
susceptibilities depend only on the internal noise strength or do they depend on the sum of
input noise and internal noise strength? To answer this question let us investigate a general
integrate-and-fire neuron of the following form

v̇ = f(v;µ) +
√

2Dcξs(t)︸ ︷︷ ︸
signal

+
√

2D(1− c)ξn(t)︸ ︷︷ ︸
noise

(3.14)

with the usual fire-and-reset rule v > vt → v = vr. The total noise has the intensity 2D and is
split into a signal part (denoted with the subscript s) and an intrinsic noise part (denoted with
the subscript n). Both the signal and the intrinsic noise are white and gaussian with variance
one. At this point we might say that we can simply add the signal and the intrinsic noise
together, but then what is the small external signal we need for our perturbation calculation?
Let us now split up the signal noise into N independent noise processes ηi(t) which all have

unit variance just as ξs

√
2Dcξs(t) =

√
2Dc
N

N∑
i=1

ηi(t), (3.15)
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3 Measurement of higher order susceptibilities in integrate-and-fire models

where we scale by a factor of 1/
√
N because the variances of these gaussian processes add up.

We now single out one of these independent noise processes to be our weak signal (answering
our question from before) and regard the rest of them as an additional contribution to the
background noise. Here, we have arbitrarily chosen the first noise process η1 to be the weak
signal. In the limit of infinitely many subprocesses the total (intrinsic) noise is then given by

intrinsic noise =
√

2D(1− c)ξn(t) +
√

2Dc
N

N∑
i=2

ηi(t)
N→∞→

√
2Dξ(t). (3.16)

The input-output correlation of our spike train with the noise signal is

〈x(ω1)
√

2Dcξ∗s (ω2)〉 =
N∑
i=1
〈x(ω1)

√
2Dc
N

η∗i (ω2)〉 = N〈x(ω1)
√

2Dc
N

η∗1(ω2)〉 (3.17)

because all the subprocesses share the same correlation with the output. This correlation is
now given by

〈x(ω1)
√

2Dc
N

η∗1(ω2)〉 = χ1(ω;µ,D)2π2Dc
N

δ(ω1 − ω2). (3.18)

Therefore we can now finally conclude for the cross-spectrum

2πSxs(ω)δ(ω1 − ω2) = 〈x(ω1)s∗(ω2)〉
= 〈x(ω1)

√
2Dcξ∗s (ω2)〉

= 4πDcχ1(ω;µ,D)δ(ω1 − ω2), (3.19)

yielding

χ1(ω;µ,D) = Sxs(ω)
2Dc . (3.20)

Comparing this to (3.9) we can see that the variance of the signal is 2Dc, which is of course
true. The most important point is that in the limit of infinitely many subprocesses all noise
is intrinsic and that its strength (i.e. its variance) is given by 2D, therefore the parametric
dependence of the susceptiblity is χ1(ω;µ,D) and not χ1(ω;µ,D(1 − c)). To summarize, the
susceptibility depends parametrically on the sum of both the intrinsic noise and the noise that
serves as our input signal.

The noise split parameter c may be interpreted as a dial with which we adjust the signal-
to-noise ratio. This is well illustrated in fig. 3.3. We can see that in all cases the numerically
obtained data (colored lines) fluctuates around the analytic solution (black line). This is mainly
due to the fact that we compute χ1(f) using a finite number of trials – here we have chosen
N = 104. By increasing the number of trials we could decrease these fluctuations. However, we
can also see another effect in the plot – if we increase the noise split coefficient c, the fluctuations
are reduced. By increasing the noise split coefficient c we are increasing the strength of the
input signal and we are decreasing the strength of the internal noise, so we are maximizing our
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Figure 3.3: First order susceptibility of the LIF for different noise intensities.
We consider a leaky integrate-and-fire neuron subject to white noise with the intensity
Dc. The neuron has intrinsic noise intensity D(1 − c). Left panel: Absolute value of
χLIF(f ;µ,D). Right panel: Angle. The coloured lines present data from a simulation,
the black line corresponds to the theory in (2.51). Parameters: µ = 1.1, D = 10−3, T =
500,∆t = 10−3, N = 104.

signal-to-noise ratio. The optimal case c = 1, where we have no internal noise and the input
signal was strength 2D gives us the most precise measurement of the susceptibility.
Coming back to the argument of the parametric dependency of the susceptibility we can see in

fig. 3.3 that no matter the value of c, all curves are of the same form, because the susceptibility
χ1(f ;µ,D) depends on the sum of input and instrinsic noise intensity Dc+D(1− c) = D.

3.3 Parameter dependence of higher order susceptibilities

The same line of arguments as presented in the last section can be repeated for all higher order
susceptibilities. To illustrate this let us take a look at the second order susceptibility. We
consider the exact same setup as in the previous section, with the total noise split into intrinsic
and signal noise by the noise split coefficient c. We also consider that the signal noise is split
into N independent noise processes. The higher order cross spectrum then reads

〈x(ω1)
√

2Dcξ∗s (ω2)
√

2Dcξ∗s (ω3)〉 =
N∑
i=1

N∑
j=1
〈x(ω1)

√
2Dc
N

η∗i (ω2)
√

2Dc
N

η∗j (ω3)〉

= N2〈x(ω1)
√

2Dc
N

η∗1(ω2)
√

2Dc
N

η∗1(ω3)〉, (3.21)
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3 Measurement of higher order susceptibilities in integrate-and-fire models

because all ηi share the same correlation function. Again, in the limit of N →∞ the intrinsic
noise strength is 2D and we know that

〈x(ω1)
√

2Dc
N

η∗1(ω2)
√

2Dc
N

η∗1(ω3)〉 = 2πδ(ω1 − ω2 − ω3)
(
r0

2Dc
N

δ(ω2 + ω3)

+2
(

2Dc
N

)2

χ2(ω2, ω3;µ,D)

 . (3.22)

The higher order cross spectrum is then given by (we assume that ω2 6= −ω3)

2πSxss(ω2, ω3)δ(ω1 − ω2 − ω3) = 〈x(ω1)s∗(ω2)s∗(ω3)〉
= 〈x(ω1)

√
2Dcξ∗s (ω2)

√
2Dcξ∗s (ω3)〉

= 2πδ(ω1 − ω2 − ω3)2(2Dc)2χ2(ω2, ω3;µ,D). (3.23)

We can rearrange this again to give us a familiar form for the second order susceptibility

χ2(ω1, ω2;µ,D) = Sxss(ω1, ω2)
2(2Dc)2 (3.24)

Just like the first order susceptibility, the second order susceptibility depends on the sum of
intrinsic and signal noise strength.
It is clear that our line of reasoning may be readily applied to all higher order susceptibilities.

The key argument is the separation of the input noise signal into N independent and identical
subprocesses, where one of them serves as the weak input signal and then take the limitN →∞.
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CHAPTER 4

Susceptibilities of the adapting leaky
integrate-and-fire model

We calculate the susceptibilities for the leaky integrate-and-fire model with an adaptation
current (LIFAC) and compare to the model without adaptation. In the first part we present
an outline similar to [13], where the perfect integrate-and-fire model with an adaptation
current has been presented. Towards the end of the chapter we will present approximations
to the second order susceptibility of the LIFAC and compare it to the known result for the
leaky integrate-and-fire model without adaptation [1, 2].

4.1 Adapting leaky integrate-and-fire model

There are two ways implementing the adaptation in the leaky integrate-and-fire model. The
first is to consider a dynamic threshold where, everytime the neuron spikes, the threshold is
increased. In the rest state the threshold then decays to a fixed value. The second way is to
consider an adaptive current that jumps by a set amount everytime the neuron fires and then,
again, decays to a fixed value. With respect to the spike frequency adaptation these two models
can be regarded as equivalent [23], see also [24] where they show a transformation from one
approach to the other. The leaky integrate-and-fire model with an adaptation current (in the
following we will abbreviate it by LIFAC in accordance with [23, 25]) and an external signal is
given by the following equations

τmv̇ = µ− v − a+ s(t) +
√

2Dξ(t), (4.1)
τaȧ = −a, (4.2)

where v(t) is the membrane voltage, a(t) is the adaptation current, µ is the mean input current,
s(t) is a (potentially weak) input current and D is the noise coefficient. The two dynamics are
associated with time scales given by the membrane time constant τm and the adaptation time
constant τa. We impose a fire-and-reset rule: if v > vt → v = vr and a → a + ∆, where the
latter may also be included in the dynamics

τaȧ = −a+ ∆τax(t), (4.3)

where x(t) =
∑

i δ(t − ti) is the spike train. It is useful to introduce dimensionless units by
rescaling the time by the membrane time constant t → t/τ and the voltage by the difference
of the threshold and reset value v → (v − vr)/(vt − vr) [26]. All parameters are taken care of
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4 Susceptibilities of the adapting leaky integrate-and-fire model

accordingly so that the dynamics now read

v̇ = µ− v − a+ s(t) +
√

2Dξ(t), (4.4)

τaȧ = −a+ ∆τa
∑
i

δ(t− ti). (4.5)
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Figure 4.1: Phase space of the LIFAC. (a): Trajectories of the leaky integrate-and-fire
neuron with an adaptation current (LIFAC). Here we can clearly see the fire-and-reset rule:
whenever v reaches the threshold vt = 1, then it is reset to vr = 0 and the adaptation jumps
by ∆. The adaptation variable then decays exponentially until the next spike. (b): In the
phase space v − a the can see a limit cycle emerging for the case of no noise (D = 0). The
diagonal lines from the lower right to upper left represent the reset rule. Parameter values:
µ = 3.1, D = 0.1, τa = 0.5,∆ = 0.1, T = 3.0,∆t = 10−3.

As a first observation we note that the dynamics of the adaptation variable can be solved
exactly

a(t) =
∑
i

∆e
t−ti
τa Θ(t− ti), (4.6)

so it is a sum of exponenial functions that decay with the decay time τa between two spikes.
The Heaviside function simply expresses the notion that a spike may only influence subsequent
spikes.

In the nonadapting leaky integrate-and-fire model the system loses all memory between
spikes through the fire-and-reset mechanism. The adaptation variable allows us to introduce
correlations between spike times. More specifically the adaptation negatively correlates the
spikes, which means that short interspike intervals will – more likely – be followed by a long
interspike interval.
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Slow adaptation, stationary case 4.2

4.2 Slow adaptation, stationary case

Let us consider the case where τa � 〈T 〉, i.e. the adaptation is much slower than the mean
firing of the neuron. In this limit the relative deviations of a(t) about its mean value are small
and we can replace a(t) with its mean value 〈a〉. Averaging the differential equation for the
adaptation value gives us a connection between the stationary firing rate and the mean value
of the adaptation variable

〈a〉 = ∆τar0(µ̂,D). (4.7)

In the slow adaptation approximation our model is reduced to a nonadapting leaky integrate-
and-fire neuron with the reduced mean input current µ̂ = µ− 〈a〉. Its firing rate may then be
determined via

r0(µ̂,D) =

√π ∫ µ̂−vr√
2D

µ̂−vt√
2D

dz ez
2erfc(z)

−1

. (4.8)

This equation together with (4.7) has to be solved self consistently, which can not be done
analytically. However, the solution may be found numerically in the following manner; we
insert (4.7) into (4.8), which reads

〈a〉
∆τa

=

√π ∫ µ̂−vr√
2D

µ̂−vt√
2D

dz ez
2erfc(z)

−1

. (4.9)

From this equation we find, for a fixed set of parameters (µ,D, vt, vr; ∆, τa), a value for 〈a〉 by
using a root finding algorithm (e.g. the bisection algorithm). We then insert this value back
into the first equation to find r0. Results for this approach are shown in fig. 4.2. It works
generally well if we are in the limit of slow and weak adaptation, for stronger adaptation –
i.e. either the time scale of the adaptation is short or the kick size is large – this semianalytic
scheme fails.

There is, however, a limit in which we can make further analytical progress. In the mean-
driven regime, i.e. |µ−vt,r√

2D | � 1 the firing rate is given by

r0 =

ln
(
µ− vr
µ− vt

)
− D

2

(
1

(µ− vt)2 −
1

(µ− vr)2

)−1

, (4.10)

which if µ� vt can be further simplified to

r0
µ�vt≈ µ− 1

2 +O(µ−1). (4.11)
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Figure 4.2: Firing rate of the LIFAC. We compare the approach of using the self
consistency equation (4.9) (solid black lines) to calculate the stationary firing rate to a
simulation (colored points). We conclude that increasing either value τa or ∆ decreases
the firing rate. (a): Fixed τa several values of ∆. (b): Fixed ∆ and several values of τa.
Parameter values: D = 0.1, T = 104,∆t = 10−3.

Therefore, in the strongly mean driven regime, we have

r0 = 1
1 + ∆τa

(
µ− 1

2

)
(4.12)

the firing rate depends linearly on the mean input current and the slope is dependent on the
product ∆τa.

4.3 Slow adaptation, response to stimuli

Let us now consider the case where our model is also subject to an external, time dependent
signal. In this case the firing rate will also vary as time passes and through the feedback
mechanism, the adaptation variable will also change over time. We want to employ response
theory which usually stipulates that the perturbations are small in some sense. Let us rewrite
our dynamics as follows

v̇ = µ− 〈a〉︸ ︷︷ ︸
:=µ̂

−v−
(
a− 〈a〉

)
+ s(t)︸ ︷︷ ︸

perturbation

+
√

2Dξ(t), (4.13)

where now the perturbation is the external signal and the variance of the adaptation around
its mean value. Notice, that our rewrite results in a reduced mean input current µ̂. While we
may stipulate that the external signal is weak, the case for the adaptation is not so easy. First
of all, we mean value of the adaptation is still time dependet, as can be seen by considering
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Slow adaptation, response to stimuli 4.3

the average of (4.6)

〈a〉(t) = ∆
∫ t

0
dse

t−s
τa r(s). (4.14)

We now assume that the mean adaptation does not vary a lot around its time independent
mean, which we can calculate by replacing r(s) → r0 in the integral, leaving 〈a〉 = ∆τar0.
The “smallness” of the perturbation of the adaptation is now determined by the magnitude of
the term (a − 〈a〉). In Ref. [13] the magnitude of the fluctuations of the adaptation variable
are quantified and we will repeat the arguments here. Consider the Fourier transform of the
adaptation current (this can easily be calculated by Fourier transforming the equation for a(t))

a(ω) = ∆τa
1− iτaω

x(ω), (4.15)

where x(ω) is the Fourier transform of the spike train. We may then express the power spectrum
of the adaptation variable through the power spectrum of the spike train

Saa(ω) = ∆2τ2
a

1 + τ2
aω

2Sxx(ω). (4.16)

The power spectrum is related to the variance of a zero mean process like so

〈∆a2〉 = σ2 =
∫
dω

2π Saa(ω) (4.17)

In the slow adaptation limit (τa → ∞) we only consider vanishingly small frequencies under
the integral. Knowing that the power spectrum of the spike train saturates at a finite value for
ω → 0 we can write

〈∆a2〉 =
∫
dω

2π
∆2τ2

a

1 + τ2
aω

2Sxx(ω) ∝ ∆2τa. (4.18)

Now comes a tricky point. Ref. [13] uses a different parametrization for the adaptation, instead
of the kick size ∆ they consider a rescaled kicksize ∆̃ = ∆τa. They then state that for a fixed
∆̃ the variance of the adaptation variable vanishes for τa →∞. We have to slightly modify this
statement to the following: the variance of the adaptation variable vanishes in the limit of slow
adaptation and if ∆2τa → 0, so the kick size also has to get smaller. To summarize, for the
perturbation caused by the adaptation in (4.13) to be small we stipulate that the adaptation
time τa is significantly longer than the intrinsic time scale, given by the mean interspike interval
〈T 〉 = 1/r0 and that the kick size of the adaptation ∆ is small.

We now want to employ the Volterra series and expand the firing rate up to second order in
the signal [1]

r(t) = r0 +
∫
dt1h(t1)s(t− t1) +

∫
dt1

∫
dt2h2(t1, t2)s(t− t1)s(t− t2) (4.19)

Since we want to obtain expressions for the susceptibilities we will work with the Fourier
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4 Susceptibilities of the adapting leaky integrate-and-fire model

transform, which reads

r(ω) = 2πr0δ(ω) + χ1(ω)s(ω) + 1
2π

∫
dω1χ2(ω1, ω − ω1)s(ω1)s(ω − ω1) (4.20)

We thereby assume that the perturbation is weak enough, so that we can neglect even higher
orders and strong enough so that a description using only the linear order does not suffice.
The Volterra series considers a general perturbation, for our case we have to insert the sum of
adaptation and the weak input signal

s(t)→ s(t)− a(t) + 〈a〉, (4.21)

s(ω)→ s(ω)− ∆τa
1− iτaω

x(ω) + 2π〈a〉δ(ω). (4.22)

Note also that (4.20) differs from (1.11) only by the static term.

4.3.1 First order susceptibility

Let us first take a step back and only consider the Volterra expansion up to first order

r(ω) = 2πr0δ(ω) + χ1(ω; µ̂,D)
(
s(ω)− ∆τa

1− iτaω
x(ω) + 2π〈a〉δ(ω)

)
. (4.23)

This statement is somewhat problematic since on the left side we have the average over all
realizations of the spike train, i.e. the firing rate, whereas on the right side the spike train
explicitly appears. Ref. [13] deals with this problem by stating that if the feedback provided
by the adaptation is weak, then this perturbation must be self consistently solved by considering
its average. Ref. [27] resolves the issue by considering the spike train also on the left side of
(4.23), which is an ansatz similar to the linear-fluctuation approximation. We will proceed by
carrying out the average on the right side of the equation so we can rearrange for the firing rate

r(ω) = 2πδ(ω)r0 + χ1(ω; µ̂,D)
1 + χ1(ω; µ̂,D) ∆τa

1−iτaω
s(ω). (4.24)

We can now identify the first order susceptibility by comparing to the Volterra expansion of
first order

χLIFAC
1 (ω;µ,D, τa,∆) =

(
1

χLIF
1 (ω; µ̂,D)

+ ∆τa
1− iτaω

)−1

. (4.25)

This first order susceptibility is algebraically identical to the case of a perfect integrate-and-fire
neuron investigated in [13]. From now on we will drop the parametric dependencies of the
susceptibilities, but we note that the susceptibility for the LIFAC involves the susceptibility for
the LIF with the reduced mean input current. In Fig. fig. 4.3 we show a comparison of this
formula to a numerical measurement of the first order susceptibility, where we have chosen the
kick size to be small. As a comparison we have also plotted the theory for a nonadapting leaky

26



Slow adaptation, response to stimuli 4.3

integrate-and-fire neuron with the reduced mean input current µ̂ as a dashed line. We can see
that (4.25) describes the data well, even for the case that the adaptation time constant τa is in
the range of the mean interspike interval 〈T 〉. The main difference between the susceptibility
for the LIFAC and the LIF with a reduced base current occurs for small frequencies, where the
transition takes place at ω ≈ 1/τa. For small frequencies the suppression in the absolute value

0.0

0.2

0.4

0.6

0.8

|χ
1(
f

)|

data

χLIFAC
1 (f ;µ,D)

χLIF
1 (f ; µ̂, D)

10−3 10−2 10−1 100 101 102

f

−3

−2

−1

0

1

2

3

φ
[χ

1(
f

)]

(a)

0.0

0.2

0.4

0.6

0.8

|χ
1(
f

)|

data

χLIFAC
1 (f ;µ,D)

χLIF
1 (f ; µ̂, D)

10−3 10−2 10−1 100 101 102

f

−3

−2

−1

0

1

2

3
φ

[χ
1(
f

)]

(b)

Figure 4.3: First order susceptibility of the LIFAC: Upper panels show the absolute
value, lower panels the complex angle of the first order susceptibility. The blue lines
represent data obtained from a simulation (see chapter 5), the solid black lines are the
theory given in (4.25), the dashed black lines represent the theory for a nonadapting leaky
integrate-and-fire neuron with the reduced mean input current µ̂. In both plots we have
chosen a small kick size of the adaptation, in (a) the time constant of the adaptation is
large τa � 〈T 〉, in (b) it is comparable to the mean interspike interval τa ≈ 〈T 〉.
Parameters for (a): µ = 2.0, τa = 20.0, resulting in 〈T 〉 ≈ 1.94. Parameters for (b):
µ = 1.1, τa = 2.0, resulting in 〈T 〉 ≈ 1.85. Parameters for both plots: T = 103,∆t =
5 · 10−4, N = 104, D = 0.1,∆ = 0.1.

of the first order susceptibility is given by

χLIFAC
1 (ω → 0) = χLIF

1 (ω → 0)
1 + ∆τaχLIF

1 (ω → 0)
, (4.26)

so the absolute value of the susceptibility will be reduced (compared to the LIF case) due to the
factor |1/(1+∆τaχLIF

1 )|. In the limit of large frequencies the additional adaptation contribution
vanishes, i.e. ∆τa

1−iτaω → 0, so that we have

χLIFAC
1 (ω →∞) = χLIF

1 (ω →∞) (4.27)
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4 Susceptibilities of the adapting leaky integrate-and-fire model

The adaptation therefore works as a high-pass filter, suppressing lower frequencies while leaving
higher frequencies unaltered. This behaviour is consistent with the findings for the adapting
PIF model [13] and adapting neurons in general [28]. In fig. 4.4 we show a comparison of our
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Figure 4.4: Same as fig. 4.3. However, in these plots we have chosen a large kick size of
the adaptation. This leads to artifacts that are no longer described by our theory, such as
a peak at the firing rate (r0 ≈ 0.27) in (a) and a peak at 1/τa = 0.05 in (b).
Parameters for (a): µ = 6.0, τa = 20.0, resulting in 〈T 〉 ≈ 3.75. Parameters for (b):
µ = 1.2, τa = 20.0, resulting in 〈T 〉 ≈ 21.13. Parameters for both plots: T = 103,∆t =
5 · 10−4, N = 104, D = 0.1,∆ = 1.0.

theory to simulations, where we have deliberately chosen a large kick size of the adaptation ∆.
Here, we are in a regime where we do not expect the perturbation stemming from the adaptation
to be small and therefore do not expect our theory to hold. We can see that there are artefacts
(peaks) appearing at the firing rate and at the adaptation frequency 1/τa. However, the small
and large frequency asymptotes are still well described by our theory.

4.3.2 Second order susceptibility

Now let us consider also the second order in the Volterra series, so that our equation for the
firing rate states

r(ω) = 2πr0δ(ω) + χ1(ω; µ̂,D)
(
s(ω)− a(ω) + 2π〈a〉δ(ω)

)
+ 1

2π

∫
dω1χ2(ω − ω1, ω1)

[
s(ω − ω1)− a(ω − ω1)

+2π〈a〉δ(ω − ω1))(s(ω1)− a(ω1) + 2π〈a〉δ(ω1)
]

(4.28)
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Using the same arguments as in the last section we average over the right side of the equation
resulting in

r(ω) = A(ω)δ(ω) +B(ω)s(ω) + C(ω)r(ω)

+ 1
2π

∫
dω1χ2(ω − ω1, ω1)s(ω − ω1)s(ω1) + 1

2π

∫
dω1K(ω, ω1)r(ω1) (4.29)

where we have introduced

Ω(ω) = ∆τa
1− iτaω

(4.30)

A(ω) = 2πr0 + 2π〈a〉χ1(ω) + 2π〈a〉2χ2(0, ω)

+ 1
2π

∫
dω1χ2(−ω1, ω1) ∆2τ2

a

1− τ2
aω

2
1
Sxx(ω1) (4.31)

B(ω) = χ1(ω) + 2〈a〉χ2(0, ω) (4.32)
C(ω) = −B(ω)Ω(ω) (4.33)

K(ω, ω1) = −2χ2(ω − ω1, ω1)Ω(ω1)s(ω − ω1) (4.34)

To bring this expression back into the form of a Volterra series we rearrange the above equation
for the firing rate and introduce two new functions

r(ω) = A(ω)
1− C(ω)δ(ω) + B(ω)

1− C(ω)s(ω)

+ 1
2π

∫
dω1

χ2(ω − ω1, ω1)
1− C(ω) s(ω − ω1)s(ω1) + 1

2π

∫
dω1

K(ω, ω1)
1− C(ω)r(ω1) (4.35)

:= f(ω) +
∫
dω1g(ω, ω1)r(ω1). (4.36)

The first three terms look promising, but we still have a problem. Due to the adaptation the
firing rate depends on itself through the integral term. However, in rewriting the series with the
functions f(ω) and g(ω, ω1) we can see that our problem has the form of a Fredholm integral
equation of second type. We can solve this equation by iteratively inserting f(ω) into the
integral term, yielding approximations of different orders. The full solution is then an infinite
sum which is also called a Liouville-Neumann series [29]. Considering only the first two orders
results in

r0(ω) = f(ω) (4.37)

r1(ω) = f(ω) +
∫
dω1g(ω, ω1)f(ω1). (4.38)

In the zeroth order we get

r0(ω) = A(ω)
1− C(ω)δ(ω) + B(ω)

1− C(ω)s(ω) +
∫
dω1

χ2(ω − ω1, ω1)
1− C(ω) s(ω − ω1)s(ω1) (4.39)
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4 Susceptibilities of the adapting leaky integrate-and-fire model

from which we identify the stationary firing and susceptibilities by comparing with the Volterra
series

r0
0 = A(0)

1− C(0) (4.40)

χ0
1(ω) = B(ω)

1− C(ω) (4.41)

χ0
2(ω1, ω2) = χLIF

2 (ω1, ω2)
1− C(ω1 + ω2) (4.42)

In the first order we get (we neglect all terms of third order in s(ω))

r1(ω) = A(ω)
1− C(ω)δ(ω) +

(
B(ω)

1− C(ω) − 2 χ2(ω, 0)Ω(0)A(0)
(1− C(ω))(1− C(0))

)
s(ω) (4.43)

+
∫
dω1

(
χ2(ω − ω1, ω1)

1− C(ω) − 2χ2(ω − ω1, ω1)Ω(ω1)B(ω1)
(1− C(ω))(1− C(ω1))

)
s(ω − ω1)s(ω1) (4.44)

with the according stationary firing and susceptibilities

r1
0 = A(0)

1− C(0) (4.45)

χ1
1(ω) = B(ω)

1− C(ω) − 2 χ2(ω, 0)Ω(0)A(0)
(1− C(ω))(1− C(0)) (4.46)

χ1
2(ω1, ω2) = χ2(ω1, ω2)

1− C(ω1 + ω2) − 2 χ2(ω1, ω2)Ω(ω1)B(ω1)
(1− C(ω1 + ω2))(1− C(ω1)) . (4.47)

Already from an analytical perspective these expressions give us valuable insight into the
problem. Since adaptation is a feedback mechanism that couples the output of the neuron (the
spike train) to itself, it will naturally lead to a coupling of the different orders of susceptibilities
as can be seen for example in the expressions for the second order susceptibilities in (4.42)
and (4.47) which feature the first and second order susceptibility with a prefactor Ω(ω). A
similar effect may be achieved by considering a network model of size one, where the output is
fed back into the system as a signal with some weighing function [27].
A check with numerical simulations can be seen in fig. 4.5. First, as in the case of the

nonadapting leaky integrate-and-fire model we can clearly see maxima at the firing rate (which
is r0 ≈ 1.5 in this case). We can also see a maximum for f1 + f2 ≈ r0, which is the diagonal
line from the top left to the bottom right. Second, we can see that the patterns seen in the
numerically obtained data are already well featured in the zeroth order approximation, however
the magnitude of the absolute value is off as can be seen by the bright yellow. The first order
approximation improves the accuracy and we can conclude that it describes the data from the
simulations well.
Another interesting comparison is the one between an adapting leaky integrate-and-fire neu-

ron and the according nonadapting leaky integrate-and-fire neuron with a reduced base current.
This situation is presented in fig. 4.6. We can see that there is little if any difference between
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Figure 4.5: Second order susceptibility of the LIFAC: We show the absolute value
(top row) and complex angle (bottom row) of the second order susceptibility of an adapting
leaky integrate-and-fire neuron. On the left side we show data that has been obtained
using the measurement scheme presented in chapter 3, in the middle we show the zeroth
order approximation shown in (4.42) and on the right side we calculated the first order
approximation using (4.47). We restricted the color bar in the top row to 0.5 for better
visibility. Values larger than 0.5 are shown in bright yellow. Parameters: µ = 3.5, D =
0.1, τa = 10,∆ = 0.1, T = 100,∆t = 5 · 10−3, N = 106.

the two plots. This implies that, atleast for the parameters shown in the plot and some other
feasible to the weakly electric fish, the second order response of the P-units can be approxi-
mated well by a nonadapting LIF with a reduced base current. However, one should use the
analytic expressions to systematically investigate parameter regimes in which there is indeed a
significant difference between the adapting and nonadapting LIF.
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Figure 4.6: Comparison χLIFAC
2 vs. χLIF

2 : We compare the second order susceptibility
of an adapting leaky integrate-and-fire neuron with the analog nonadapting leaky integrate-
and-fire neuron with a reduced base current. Parameters LIFAC: µ = 3.5, D = 0.1, τa =
10,∆ = 0.1, Parameters LIF: µ = 1.99, D = 0.1, other Parameters: T = 100,∆t =
5 · 10−3, N = 106.
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CHAPTER 5

Spike: A numerical toolbox for
integrate-and-fire simulations

In the previous chapters we have shown lots of plots comparing our analytical results to
numerical simulations. However, without a closer look at how we did said simulations the
comparison is meaningless. We will present the software used throughout the thesis in this
chapter and show which assumptions underly its numerical work.

5.1 Project description
The name of the software project is Spike and it is written in C++ and is freely avaiable
at github.com/chegerland/spike. Spike is specifically written for the numeric measurement of
susceptibilities of integrate-and-fire neurons, but we may also calculate phase plane trajecto-
ries and firing rates with it. It is a library implementing lots of functionalities with several
executables that do the heavy lifting and have all been written to work on a cluster using MPI.
In chapter chapter 3 we have already outlined the numeric scheme with which we measure

the susceptibilities

• Prepare white noise signal x(t) with variance A
• Simulate neuron model with the white noise as input
• Measure the output, i.e. the spike train y(t)
• Use formulae (3.9) and (3.13) to obtain the susceptibilities

We will outline each of these steps since they all come with their own difficulties. We choose a
time frame of length T and a time step ∆t, which fully determine our time discretization. The
discrete times are then given by

tk = t0 + k∆t, k = 0, 1, 2, . . . , N − 1 (5.1)

N = T

∆t = tend − t0
∆t (5.2)

and may be represented as an array of length N .

5.2 Generating gaussian white noise
We need a discretized version of gaussian white noise with variance A. We prepare a complex
number array f[n] of length N and fill every entry in the following way
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5 Spike: A numerical toolbox for integrate-and-fire simulations

f[n] = sqrt(A * T) * (cos(2 * pi * rand) + I * sin(2 * pi * rand))

where rand is a random number drawn from a normal distribution with mean zero and standard
deviation of one. The prefactor ensures that the variance of the gaussian white noise is indeed
equal to A, we can see this by evaluating the power spectrum, which is

S[n] = 1/T * f[n] * conj(f[n]) = 1/T * sqrt(A * T) * sqrt(A * T) = A

where we omitted the array index and wrote conj(f) for the complex conjugated frequency.
This frequency spectrum of the gaussian white noise has to be cut off at the highest frequency
of the system, which, in our case, is the Nyquist frequency 1/(2∆t). Cut off means, that all
frequencies higher than the Nyquist frequency are simply set to zero. The resulting frequency
array is then Fourier transformed using a fast Fourier transform method, which gives us the
gaussian white noise in time domain.

5.3 Simulating adapting integrate-and-fire neurons

For the simulation of an (adapting) integrate-and-fire neuron we choose the same time dis-
cretization as above. Then we use the Euler-Maruyama method to get an approximate solution
to the stochastic differential equation. In the case of an adapting integrate-and-fire neuron
we simply include the adaptation current in the process as we would do in a nonstochastic
Euler method. Let us take as an example the adapting leaky integrate-and-fire neuron with
the parameters µ,D,∆, τa. The simulation with a signal looks something like this

for (i = 1; i < N; i++) {
v[i] = v[i-1] + (mu - v[i-1] - a + s[i-1]) * dt

+ sqrt(2*D) * rand * sqrt(dt)
a[i] = a[i-1] - 1 / tau_a * a[i-1] * dt

if (v[i] > 1) {
v[i] = 0
a[i] += Delta

}
}

where rand is again a random number drawn from a normal distribution with mean zero and
standard deviation of one, and we have named all parameters like their LaTeX equivalents. In
the last four lines of the code we see the fire-and-reset rule. With this simulation method it
is easy to construct a spike train: Take an array of length N, every time the neuron does not
spike the according entry is zero, everytime it does spike the entry is 1/dt.

5.4 Numerical measurement of the susceptibilities, FFT

Now that we know how to numerically represent the spike train and the input signal, which
is gaussian white noise, we may proceed by calculating the susceptibilities. As presented in
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chapter 3 we may calculate them with these formulae

χ1(ω) = Sxs(ω)
A

(5.3)

χ2(ω1, ω2) = Sxss(ω)
2A2 (5.4)

where Sxs(ω) and Sxss(ω1, ω2) are the (higher order) cross spectra between the spike train x
and the signal s. Mathematically they are defined as Fourier transform of an appropriate cross
correlation function. Numerically we can approximate them by their finite time counter parts

Sxs(ω) = lim
T→∞

S̃xs(ω) = 1
T

∫ T

0
x(t) exp(−iωt)dt

∫ T

0
s(t′) exp(iωt′)dt (5.5)

Sxss(ω1, ω2) = lim
T→∞

S̃xss(ω1, ω2)

= 1
T

∫ T

0
x(t) exp(−i(ω1 + ω2)t)dt∫ T

0
s(t′) exp(iω1t

′)dt′
∫ T

0
s(t′′) exp(iω2t

′′)dt′′ (5.6)

Notice that the normalization factor for the higher order cross spectrum is still 1/T [30]! As
we can see from the limit in the last expression our time window has to be large for the
approximation to be valid. We approximate the integral

∫ T
0 x(t) exp(−iωt)dt by employing our

time discretization from before, resulting in

x(ω) =
∫ T

0
x(t) exp(−iωt)dt ≈ ∆t

N−1∑
k=0

xk exp(−iωntk) = x(ωn), (5.7)

with the discrete, positive frequencies ωn = 2πn/T, n = 0, 1, . . . , N/2. The sum

N−1∑
k=0

xk exp(−iωntk) (5.8)

can be calculated very fast using a fast Fourier transform (FFT) algorithm.

In the simulation the first order susceptibility will be a one dimensional array, whereas the
second order susceptibility will be a two dimensional array. In both cases each entry will
correspond to a specific, positive frequency or in the case of the second order susceptibility
a combination of positive frequencies. To get the whole frequency range, i.e. positive and
negative frequencies we may use the following symmetry relations, that are evident from the
definitions of the (higher order) cross spectra

χ1(−ω) = χ∗1(ω) (5.9)
χ2(ω1, ω2) = χ2(ω2, ω1) (5.10)

χ2(−ω1,−ω2) = χ∗2(ω1, ω2) (5.11)
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Contrary to [2] this does not mean that the first quarter fully determines the second order
susceptibility for the whole frequency range, but it rather implies that we may only calculate
one triangle of the first and one triangle of the fourth quarter as shown in fig. 5.1.

Figure 5.1: Using symmetries of the second order susceptibility we may restrict our cal-
culation to two principal domains A and B.
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CHAPTER 6

Outlook

In chapter 2 we have calculated the second order susceptibility for a general integrate-and-fire
neuron and we have shown that we can reduce it to the known case of a leaky integrate-and-
fire neuron. Our work would greatly benefit from a further calculation for e.g. the perfect or
quadratic integrate-and-fire models, especially for comparison between the models as has been
done in [26]. Whether it is possible to obtain analytic expressions has to be shown, but even a
numerical treatment and comparison is likely to be fruitful. A known method for the numeric
calculation of the response functions is the Richardson threshold integration method [31] could
be adapted for the calculation of the second order susceptibility. It may also be constructive
since it provides an alternative numerical approach to the one we have presented in chapter 5.
In chapter 3 we have inspected the parametric dependency of the first and second order

susceptibility on the noise strength. We have shown that the susceptibilities depend on the
sum of the intrinsic and external noise strength. The arguments that we have presented may
be readily applied to all higher order susceptibilities.
Then in chapter 4 we have finally calculated the first and second order susceptibility for the

adapting leaky integrate-and-fire neuron. The expressions have been obtained in the limit of a
slow and weak adaptation. Whether they actually describe the nonlinear response in the P-unit
of the weakly electric fish has to be checked by experiment of course. On a theoretical level
we noticed that the obtained expression for the adapting leaky integrate-and-fire neuron does
not significantly differ from the nonadapting leaky integrate-and-fire neuron with a reduced
base current. This may be due to the parameters we have used and future work should explore
whether this phenomenon is universal or, in other words, for which parameters there is a
significant difference between the two. In any case we have used a self consistent approach to
obtain analytical expressions that match well with the numerically obtained data.
Finally, in chapter 5 we have shown how we carry out our numeric simulations. We concluded

that the main difficulties are that we need a long time window, short time steps and a lot of
realizations in order for our results to be accurate. Thanks to the parallelization of our code
we are able to run simulations on a computer cluster, which greatly accelerates the process of
obtaining numerical data.
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