
PHYSICAL REVIEW B 100, 235418 (2019)

Polaritonic contribution to the Casimir energy between two graphene layers

C. H. Egerland ,1,2 K. Busch,1,2 and F. Intravaia 1

1Humboldt-Universität zu Berlin, Institut für Physik, AG Theoretische Optik & Photonik, 12489 Berlin, Germany
2Max-Born-Institut, 12489 Berlin, Germany

(Received 24 October 2019; published 11 December 2019)

We study the role of surface polaritons in the zero-temperature Casimir effect between two graphene layers
that are described by the Dirac model. A parametric approach allows us to accurately calculate the dispersion
relations of the relevant modes and to evaluate their contribution to the total Casimir energy. The resulting force
features a change of sign from attractive to repulsive as the distance between the layers increases. Contrary to
similar calculations that have been performed for metallic plates, our asymptotic analysis demonstrates that at
small separations the polaritonic contribution becomes negligible relative to the total energy.
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I. INTRODUCTION

As technology progresses further towards miniaturization,
effects that are usually imperceptible at large scales start to
become important. Prominent examples are dispersion forces
and, in particular, the Casimir effect, which, in its simplest
form, describes an attractive interaction between two electri-
cally neutral nonmagnetic macroscopic objects placed in vac-
uum at zero temperature. In the approach originally followed
by Casimir in 1948 [1], the force was derived by summing
the zero-point energies associated with the electromagnetic
modes of the system. In the case of an empty cavity formed
by two parallel material interfaces, the Casimir energy is
given by

E =
∑
σ,n

∑
k

[
h̄

2
ωσ

n (k, L)

]L

L→∞
, (1)

where h̄ is the reduced Planck constant, σ = TE, TM indi-
cates the field polarization, and k = (kx, ky) is the component
of the wave vector parallel to the interfaces. The bracket
notation describes the regularization procedure introduced by
Casimir to extract a finite result and implies the difference
between the sum evaluated at a finite separation L of the
material interfaces and the same sum calculated in the limit
L → ∞. Physically, this amounts to setting the zero of the
energy to correspond to a configuration where no interaction
between the objects occurs.

While in the summation every mode is treated equally,
this does not mean that their relative contributions to the
final result are equal, too. In fact, in earlier calculations it
was pointed out that, for the Casimir effect, surface polariton
modes play a special role [2–8]. These surface polaritons are
mixed light-matter excitations that exist at the interface of two
media and are usually associated with electromagnetic fields
which decay exponentially away from the surface [9–12].
Over the last decade, these solutions of the Maxwell equations
have attracted considerable interest due to their unique prop-
erties and the possibilities they offer to nanophotonics and
(quantum) optical technologies [12–15]. Specifically, in the

case of two metallic plates it has been shown that the surface
plasmon polaritons dominate the Casimir interaction at short
distances and strongly affect the force at large distances.
This suggests controlling the Casimir effect by manipulating
the surface polaritons’ properties via structuring the surface
[16,17].

Other methods to tailor the interaction usually rely on the
optical properties of the materials comprising the objects.
For instance, in recent studies graphene has emerged as an
interesting candidate and, due to its exotic properties, is be-
ing considered in both theoretical and experimental research
[18–26]. In fact, this research is also relevant in connection to
the role played by dispersion forces in the context of so-called
van der Waals materials [27–31]. For such investigations, an
adequate theoretical description of graphene’s optical prop-
erties is important in order to predict the right magnitudes
of the Casimir force at the relevant length scales [22]. One
of the most successful corresponding material models is the
so-called Dirac model, which describes the collective motion
of the electrons in graphene in terms of a (2 + 1) Dirac
field [32].

In this paper, we merge the previous perspectives and
analyze the role of the surface polaritons for the Casimir effect
between two graphene layers that are described by the Dirac
model. In our approach, we consider the case where graphene
might feature a small gap � in its band structure [22,33] due
to, for example, strain or impurities [34–37]. In Sec. II we
start by analyzing the behavior of the scattering coefficients
for a single graphene layer described within the Dirac model.
We then calculate the total Casimir energy at zero temperature
and determine its behavior for short and large separations
between the layers (Sec. III). Based on this analysis, we
proceed to calculate, in Sec. IV, the dispersion relation of
the polaritonic modes and, in Sec. V, their contribution to
the Casimir energy. Specifically, we contrast the asymptotic
behavior of the polaritonic contribution to that of the total
energy in order to highlight the analogies and the differences
with respect to the result obtained for ordinary metals [7]. In
Sec. VI, we discuss our findings.
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FIG. 1. Correction factor η as a function of the separation length
L measured in units of λ�. We have used the values α = 1/137 and
v = 1/300. The asymptotes, shown as red dashed lines, illustrate a
scaling (of the Casimir energy) of ∝ L−3 for short separations (L �
λ�) and ∝ L−5 for large separations (L � λ�). The gray hatched
area corresponds to the regime for which the predictions of the
Dirac model become less reliable, where we have chosen λMin/λ� =
2 × 10−3.

II. DIRAC MODEL FOR GRAPHENE

The Dirac model describes the electronic excitations in
graphene as fermions moving in (2 + 1) space-time dimen-
sions at the Fermi velocity v = vF/c ≈ 1/300, where c is the
speed of light in vacuum. This effective description is valid
up to an energy EMax of a few eV. Therefore, this sets a
frequency limit ωMax of hundreds of terahertz beyond which
the reliability of the results for graphene’s optical response
obtained within this approach becomes questionable. Pristine
graphene corresponds to massless fermions [32]. However,
previous work has shown that graphene’s band structure may
feature a band gap � ≈ 5–50 meV [34–37], which can be
modeled as an effective mass in the (effective) Dirac equation.
This introduces an additional scale into our system which,
in terms of a Compton-like wavelength, is given by λ� =
h̄c/2�. For the values of the gap mentioned above we have
λ� ≈ 2–20 μm.

Within this description, the scattering (reflection and trans-
mission) coefficients for a single graphene layer can be ob-
tained by solving a spinor loop diagram in the aforementioned
(2 + 1) dimensions and subsequently coupling the emerg-
ing polarization tensor to the electromagnetic field [18,38].
Following this approach, the reflection coefficients can be
written as

rTM(ω, k) = κ	00

κ	00 + 2k2
, (2a)

rTE(ω, k) = k2	tr − κ2	00

k2(	tr + 2κ ) − κ2	00
, (2b)

where k = |k| =
√

k2
x + k2

y and κ =
√

k2 − ω2/c2 = −ikz is
connected to the wave vector component perpendicular to
the plane. The definition of the square root is chosen so that
Im[κ] < 0 and Re[κ] � 0: κ is real for evanescent waves and
imaginary in the propagating sector. 	 is the polarization ten-
sor, where 	00 denotes its 00 entry (the index 0 corresponds to
the time dimension) and 	tr denotes the polarization tensor’s
trace (over the temporal index 0 and the spatial indices 1 and
2) [18]. For arbitrary temperature, nonzero chemical poten-
tial, and a nonzero band gap, the polarization tensor and its
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FIG. 2. The dispersion relations of the single-layer polariton
ω0(k) (blue dash-dotted line) and of the two coupled polaritons
ω±(k) (red dashed and green dotted lines) all lie below the pair-
creation threshold ωpc(k). For better graphical representation the
dispersion relations are plotted for the parameters α = v = 1/2. The
antisymmetrically coupled polariton ω+(k) (red dashed line) has to
be continued with ω = ck starting from the point where it becomes
tangent to the light cone, downward to zero.

components feature rather complicated expressions [18,38].
The previous equations for the reflection coefficients take into
account the nonlocal interaction between the electromagnetic
field and the electrons in graphene and, in the appropriate
limits, reduce to the expressions in the so-called optical ap-
proximation [39,40]. For simplicity, we restrict ourselves to
the case of zero temperature (T = 0) and undoped sheets,
corresponding to a vanishing chemical potential. It is also
convenient to define the dimensionless quantities λ = L/λ�,
K = kλ�, 
 = ωλ�/c, and μ = κλ� = √

K2 − 
2. Within
this notation, the entries of the polarization tensor take on a
more compact form, and we can write

	00(
, K,�) = 2
α

λ�

K2

p2
ψ (p), (3a)

	tr (
, K,�) = 2
α

λ�

μ2 − p2

p2
ψ (p), (3b)

where α is the fine-structure constant, p = √

2 − v2K2, and

ψ (p) = (p + 1/p)arctanh(p) − 1 [41]. The function ψ (p) is
positive for 0 < p < 1. For p → 0, it behaves as ψ (p) ≈
4p2/3, and it diverges for p → 1. The value p = 1 corre-
sponds to an effective pair-creation threshold and physically
corresponds to the case where the energy of the (2 + 1) Dirac
field equates the gap (i.e., the effective mass). In the 
-K
plane the pair-creation threshold regime is represented by the
curve 
pc(K ) = √

1 + v2K2 (see Fig. 2 below). For p > 1 the
function ψ (p) and the reflection coefficients become complex
quantities, indicating the conversion of some of the energy in
electron-hole pair excitations. The limit p � 1 is equivalent
to the case � → 0 and gives ψ (p) → ipπ/2.

For zero temperature and undoped sheets the reflection
coefficients take the form

rTM(
, K ) = αμψ (p)

αμψ (p) + p2
, rTE(
, K ) = − αψ (p)

αψ (p) − μ
.

(4)
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Here, their dependence on 
 and K is implicitly captured via
the parameters μ and p. As expected on physical grounds,
the above expressions show that for our system the scattering
of the electromagnetic radiation is controlled in strength via
the fine-structure constant α and therefore is generally weaker
than for ordinary materials. The above reflection coefficients
do not fulfill the ultraviolet transparency condition and do
not vanish in the limit 
 → ∞, where r ∼ α. However, as
discussed above, it is well known that in this limit the Dirac
model becomes unreliable, a characteristic feature which has
to be taken into account when interpreting corresponding
calculations.

III. CASIMIR ENERGY OF GRAPHENE

Before we focus on the contribution of the polaritonic
modes it is useful to analyze the behavior of the total Casimir
energy per area. It is given by the Lifshitz formula [42], which
for our system reads

E (L)/A = h̄
∫ ∞

0

dξ

2π

∫
d2k

(2π )2

∑
σ

ln
[
1 − r2

σ (iξ, k)e−2κL
]
,

(5)
where rσ (iξ, k) are the reflection coefficients evaluated along
the positive imaginary frequency axis in the complex ω plane
and A denotes the area of the layers. For our purposes and in
analogy to the procedure followed in previous works [7,43], it
is convenient to introduce the correction factor

η = E (L)/Eperf (L), Eperf (L) = − h̄cπ2

720

A

L3
, (6)

which describes the impact of the material properties with
respect to the expression for the Casimir energy between two
perfectly reflecting surfaces, Eperf (L). Since the perfect elec-
tric conductor limit represents an upper bound for the Casimir
effect between two identical material layers, η � 1 indicates
that realistic material properties lead to an interaction with
reduced strength. In general, the correction factor depends on
the system’s parameters, at short separation between the layers
and for ordinary materials, it goes to zero ∝ L, describing
the transition from the retarded (∝ L−3) to the nonretarded
(van der Waals) limit of the Casimir energy (∝ L−2) [7]. For
ordinary materials and for large values of L the correction
factor tends to a constant, showing that, in the case of real
materials, Casimir’s result for perfect reflectors is simply
reduced by a prefactor (at large separations η → 1 for metals).
In the case of graphene, using dimensionless variables, we
have that η ≡ η(α, v, λ). However, contrary to the case of
ordinary materials, in the short-distance limit (λ → 0) the
correction factor tends to a constant given by

η(α, v, 0) ≈ 45

π4
[gTM(α, v) + gTE(α, v)], (7)

where gσ (α, v) are involved functions whose details are given
in the Appendix. For values of α � 1 we see that η scales
as ∝ α2, with a proportionality factor that depends on v.
Conversely, for small values of the Fermi velocity η tends to
a constant that depends on α (see the Appendix).

The above result has to be considered with care since it is
connected to the behavior of the optical response of graphene

in a frequency region where a description in terms of the Dirac
model starts to fail. The corresponding constraint corresponds
to a minimal distance λMin = c/ωMax below which the above
results start to become inaccurate. In Fig. 1, we mark this
regime with gray shading. Still, the value λMin is about two
to three orders of magnitude smaller than λ� given above.
The expression for η(α, v, 0) does not depend on the size of
the gap, and it is therefore equivalent to its value for � = 0.
Equation (7) is therefore in agreement with the ∝ L−3 scaling
of the Casimir energy that, in the limit of zero band gap,
was previously observed for all finite separations [44]. For
realistic values of α and v we obtain η(α, v, 0) ≈ 4.8 × 10−3,
indicating a reduction of three orders of magnitude relative to
the perfect reflector case. We also note that the contribution
of the TM mode (quantified by gTM) accounts for 99.6%
of the value of η(α, v, 0), showing the significance of this
polarization to the overall Casimir interaction in the case of
graphene.

In the limit of large separations, i.e., for λ � 1, we have
instead

η(α, v, λ) ≈ 240α2

π4λ2

[
1 + 1

15
(3 + 4v2 + 3v4)

]
, (8)

indicating a change in power-law behavior of the energy
from ∝ L−3 to ∝ L−5 and showing that the presence of a
band gap leads to a change in the Casimir force’s scaling
that is accompanied by a reduction in magnitude. This can
be understood by considering that, at large separations, the
Casimir effect effectively probes the low-frequency optical
response of the material: The presence of a band gap makes
graphene a poor reflector at low energies. This behavior is,
however, very different with respect to that of ordinary metals
(which, for low frequencies, act as nearly perfect reflectors)
and explains the deviation from the ∝ L−3 power law. Still,
the change in the exponent of the power law is unusual:
For ordinary materials, in going from the nonretarded to the
retarded limit, the exponent usually changes by one unit due
to the occurrence of the length scale provided by the plasma
frequency of the medium. This variation of two units in the
exponent can, once again, directly be attributed to the different
behavior of graphene’s reflection coefficients: For a nonzero
gap, these coefficients feature a dielectric-like behavior with
a reflectivity that vanishes in the limit k, ω → 0, while for
ordinary metals it tends to a constant (see the Appendix).

IV. POLARITONIC MODES

For a single planar object, surface polariton modes are
associated with resonances in the corresponding reflection
coefficients. Consequently, their dispersion relation can be
determined by solving r−1

σ (ω, k) = 0. Since ψ (p) is real
for p < 1 and larger than zero for 0 < p < 1, we can infer
from the expressions in Eq. (4) that, contrary to the usual
behavior of ordinary metals, polaritonic modes appear only in
the TE polarization. This leads to profound modifications of
the electromagnetic field profiles that are connected to these
excitations. For ordinary metals, the polaritonic resonances
are typically associated with a TM-polarized field, which is
predominantly electric. This property is related to the charge
oscillations bounded to the surface (plasmons for metals)
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constituting the matter part of the polaritonic mode. Instead, a
TE-polarized field is predominantly magnetic in nature. This
behavior is connected to the statistically induced change in
sign of the spinor loop which gives the polarization tensor
for graphene [41,45]. In Ref. [46], where TE resonances
were analyzed, this behavior was associated with a change in
sign of the interband contribution to graphene’s conductivity
with respect to the behavior of the intraband conductivity of
ordinary metals.

The dispersion relation for the TE-polarized surface po-
lariton of a single graphene layer can, in the 
-K plane, be
described in terms of the parametric curve


0(K ) ≡

⎧⎪⎪⎨
⎪⎪⎩


0(μ) =
√

v2μ2+ψ iv[ μ

α ]2

1−v2 ,

K0(μ) =
√

μ2+ψ iv[ μ

α ]2

1−v2 ,

(9)

where ψ iv denotes the inverse function of ψ , i.e., ψ (ψ iv(x)) =
x. For v < 1 one has 
0(μ) � K0(μ), indicating that the field
associated with this surface polariton is evanescent, in agree-
ment with μ ∈ (0,∞). Furthermore, the resulting dispersion
relation is bounded from above by the pair-creation threshold
frequency 
pc(K ). These features are also clearly visible in
Fig. 2. In particular, we observe that the polaritonic dispersion
curve for the single graphene layer lies entirely below the
light cone (ω = ck or, equivalently, μ = 0), goes to zero for
small wave vectors, and tends to the pair-creation frequency
for large k. The behavior of the TE-polarized surface polariton
has already been examined in great detail in the existing
literature using a semianalytical approach in Ref. [45] and
using a parametric representation in Ref. [33].

In the case of two identical, parallel graphene sheets, the
polaritonic excitations that live on each layer couple through
their evanescent tails (see Fig. 3). In this case the dispersion
relation of the corresponding coupled modes can be found
from the solutions of

1 − r2
TE(ω, k)e−2κL = 0 ⇒ −r−1

TE (ω, k) = ±e−μλ. (10)

The solutions we are looking for must, in the limit λ → ∞,
tend to Eq. (9) since in this case the two sheets do not
interact and the single-layer case must be recovered. At finite
separations, the interaction removes the degeneracy, and two
distinct coupled polaritons arise with a dispersion relation
that also depends on the distance between the layers through
the parameter λ. These coupled polaritons can be classified
in terms of the properties of their electromagnetic field, and
we distinguish between an antisymmetric (plus sign) and a
symmetric (minus sign) polaritonic excitation. Similar to the
single-layer case, their dispersion relations are given in terms
of the parametric expressions


±(K, λ) ≡

⎧⎪⎪⎨
⎪⎪⎩


±(μ, λ) =
√

v2μ2+ψ iv[ μ

α
f±(μλ)]2

1−v2 ,

K±(μ, λ) =
√

μ2+ψ iv[ μ

α
f±(μλ)]2

1−v2 ,

(11)

where we have defined the function f±(x) = (1 ∓ e−x )−1.
Since f±(x → ∞) ∼ 1 at large separation, i.e., λ � 1,
Eq. (11) approaches Eq. (9). The corresponding curves lie in
the evanescent sector (i.e., below the light cone), and they

+ +...

FIG. 3. Schematic illustration of the setup analyzed in this work.
The Casimir force between two identical, parallel, undoped graphene
layers is considered. Particular attention is devoted to the polaritonic
contribution. When the distance between the layers is reduced, the
polaritons featured by each of the graphene layers start to interact.
This interaction removes the degeneracy, and the coupled modes are
distinguished in terms of their associated field into symmetric (ω−)
and antisymmetric (ω+) coupled surface polaritons.

are both bounded by the pair-creation threshold frequency
to which they tend for k → ∞. Further, the coupled modes
obey the relation 
−(K ) < 
0(K ) < 
+(K ). At small wave
vectors, however, the two coupled modes behave in a very
different way. The symmetric polariton frequency goes to zero
for k → 0 in a way similar to the single-layer mode, although
we always have 
−(K ) < 
0(K ). Conversely, the 
+(K, λ)
mode stops at

K ≡ Klc = ψ iv
[

1
αλ

]
√

1 − v2
, (12)

where, using the parametric expressions in Eq. (11), one can
also show that the dispersion relation of the antisymmetric
mode becomes tangent to the light cone (i.e., at this point, the
group velocity is c). In the case of two metallic plates [4,7], the
curve corresponding to 
+(K ) continues above the light cone,
indicating a change in the polaritonic field in the transverse
direction from evanescent to propagating. For the graphene
layers considered here, we find no propagating branch for the
antisymmetric mode. This behavior is related to the mathe-
matical properties of ψ (p) in the propagating sector, below
the pair-creation threshold—a solution would correspond to
values for which μ is a purely imaginary number while p < 1.
This feature is similar to what was already observed for the
polaritonic modes in a magnetodielectric cavity [47]. As in
this case, the antisymmetric mode 
+(K ) can be seen as
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departing from a continuum of TE-polarized waves which
occurs for ck < ω and is associated with the branch cut in
the reflection coefficient due to the square root of κ . Note that
the entire light cone (μ = 0) is a trivial, distance-independent
solution of (10) that describes the antisymmetric polariton.
Due to its properties and in order to preserve the number of
modes as a function of the wave vector, analogous to Ref. [47],
we continue the 
+(K ) dispersion relation along the light
cone from K = Klc down to zero (see Fig. 2). Starting from
the above considerations, we calculate, in the next section, the
contribution of surface polariton modes to the overall Casimir
energy.

V. POLARITONIC CONTRIBUTION TO
THE CASIMIR ENERGY

In analogy to Eq. (1), we define the polaritonic contribu-
tion starting from the zero-point energy associated with the
different modes:

Epol =
∑

k

[
h̄ω+(k, L)

2
+ h̄ω−(k, L)

2

]L

L→∞
. (13)

Using our dimensionless variables, this expression can be
written as

Epol(λ)

EN
=

∫ ∞

0
KdK[
+(K, λ) + 
−(K, λ) − 2
0(K )],

(14)
where EN = h̄ck3

�A/(4π ). Here, we have already considered
that in the limit L → ∞ the coupled modes tend to the single-
layer polariton. Owing to the implicit nature of the dispersion
relations, this expression does not lend itself to a simple,
straightforward evaluation. For our analytical and numerical
investigations it is convenient to change the integration vari-
able to μ, which was used as a parameter in Eqs. (9) and (11).
Due to the Jacobian KdK = μdμ + 
d
, the polaritonic
energy can be written as

Epol(λ)

EN
= 1

3

[

3

+ + 
3
− − 2
3

0

]K→∞
K→0,Klc

+ 1

3
K3

lc

+
∫ ∞

0
[
+(μ, λ) + 
−(μ, λ) − 2
0(μ)]μdμ.

(15)

In the first line, the upper limits cancel each other, and the
lower limit of 
0 and 
− is zero. The remaining lower limit
of 
+ cancels the second term, leaving us with

Epol(λ)

EN
=

∫ ∞

0
[
+(μ, λ) + 
−(μ, λ) − 2
0(μ)]μdμ.

(16)
This integral allows for a simpler analytical treatment and a
robust numerical evaluation.

In Fig. 4, we depict the polaritonic energy in Eq. (16),
and this highlights two important features of this contribution
to the Casimir energy. First, in the case of two graphene
layers and for λ = L/λ� � 1 the energy tends to a finite
negative constant (see also below). When compared to the
total energy discussed in Sec. III (see Fig. 1), this means
that, contrary to the case of ordinary metals described via a
spatially local dielectric model, where the plasmonic energy
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FIG. 4. Absolute value of the polaritonic energy scaled to EN as
a function of the separation length in units of λ�. The asymptotes
shown as red dashed lines illustrate a scaling of ∝ L−5/2 for large
separations and a scaling of ∝ L0, i.e., a constant for vanishing
separations. Inset: The polaritonic energy exhibits a maximum at
L ≈ 74λ�, where the behavior of the polaritonic modes changes from
an attracting contribution to a repulsing one.

negatively diverges and dominates the Casimir interaction at
short separations, for two graphene layers in close proximity,
the surface polaritons provide only a subleading contribution
to the total energy in Eq. (5). At this point we would like to
emphasize that, different from the total energy, the polaritonic
contribution is less sensitive to the minimal distance constraint
discussed in Sec. III that has been derived from the range
of validity of the Dirac model. Indeed, due to the low value
of vF/c, the corresponding polaritonic energies, in the region
where they contribute to the Casimir energy (k � 1/L), are
limited by the pair-creation threshold. This means that the
results are reliable for L � (vF/c)λMin.

Similar to the metallic case, the function Epol(λ) increases
with distance between the graphene layers and reaches a
maximum at L ≈ 74λ�. This indicates that the polaritonic
contribution to the total force is attractive for distances shorter
than this value and repulsive at larger separations. Interest-
ingly, in this latter limit Epol ∝ L−5/2, which is the same
scaling that has been observed for surface plasmon polaritons
in the metallic case [7]. These findings are also confirmed by
the detailed asymptotic analysis reported below.

Asymptotic behaviors for short and large separations

From a more mathematical point of view, the difference
between the coupled and the isolated polaritons is due to
the behavior of the function f±(x). Since ψ iv[x � 1] ∼ 1,
for λ � 1 we obtain the main contribution to the integral in
Eq. (16) for μ ∼ α. As a result, in the limit λ → 0, we have

f+(μλ) ≈ 1

μλ
+ 1

2
� 1, f−(μλ) ≈ 1

2
. (17)

In this limit, the expressions in the integrand of Eq. (16)
thus become distance independent. Setting x = μ/α, the
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polaritonic energy approaches a constant given by

Epol(λ)

EN

λ→0−−→ α2
∫ ∞

0
dx x

⎡
⎣

√
(αv)2x2 + 1

1 − v2

+
√

(αv)2x2 + ψ iv[x/2]2

1 − v2
−2

√
(αv)2x2 + ψ iv[x]2

1 − v2

⎤
⎦. (18)

This expression scales with α2 and is only weakly depen-
dent on v. Using α = 1/137 and v = 1/300 gives Epol/EN ≈
−7.6 × 10−5.

For larger separations, the dispersion relations of the cou-
pled polaritonic modes are very close to the uncoupled one.
The difference is controlled by the small parameter e−μλ,
which is significant only for μ � 1/λ. In the limit 1/λ → 0
we may then neglect the first term under the square roots in
Eqs. (9) and (11) and consider that ψ iv(x → 0) ≈ √

3x/2. We
then have


±(μ, λ) − 
0(μ) ≈
√

3μ

α

1 − v2

√
f±(μλ) − √

f0(μλ)

2
.

(19)

Inserting the previous expressions in Eq. (16) and employing
a change in variable x = μλ, it is straightforward to show that,
for large distances, the polaritonic energy goes as

Epol(λ � 1)

EN
≈

√
3

4α(1 − v2)

C

λ5/2
, (20)

where C is a numerical constant given by

C =
∫ ∞

0
dx x

3
2

{√
1 + tanh

[
x
2

]
2

+
√

1 + coth
[

x
2

]
2

− 2

}

≈ 0.2132. (21)

The polaritonic modes thus give a contribution to the energy
which is positive and vanishes slower than the total energy
(E (L) ∝ L−5).

VI. DISCUSSION AND CONCLUSIONS

In this work, we have analyzed in detail the contribution of
surface polaritons to the zero-temperature Casimir interaction
between two parallel graphene layers that are separated by
vacuum and are described by the Dirac model. In our descrip-
tion we include a small gap in the band structure of graphene
that accounts for the effect of strain or other experimental
conditions which can lead to a breaking of symmetry in the
material’s lattice structure.

Specifically, we have derived parametric expressions for
the two coupled surface modes that result from the hy-
bridization of the two single-layer polaritons and have cal-
culated their contribution to the Casimir energy. For the
parameters considered (T = 0 and vanishing chemical po-
tential), the system allows for only TE-polarized surface
resonances. Despite the complexity of the expressions, our
approach has allowed for a detailed analytical description of

the polaritonic energy. We have shown that all modes are
associated with an evanescent field: the dispersion relations of
the single-layer ω0(k) and the symmetric coupled mode ω−(k)
tend to zero for k → 0; the remaining antisymmetric coupled
mode ω+(k) becomes instead tangent to the light cone for
a positive and distance-dependent value of the wave vector.
A similar behavior was observed in the case of the surface
polaritons occurring in a magnetodielectric cavity [47].

Further, we have analyzed the behavior of the polaritonic
contribution for small and large separations L between the
layers and have contrasted the resulting expressions with those
for the total Casimir energy. Contrary to ordinary metals,
for which the polaritonic contribution describes the nonre-
tarded short-distance behavior (van der Waals limit), the total
energy for graphene scales ∝ L−3 while the surface modes’
energy tends to a constant. Due to the band gap, at large
distances the total zero-temperature Casimir energy exhibits
an unusual L−5 behavior, while the polaritonic energy scales
as ∝ L−5/2, similar to that found for the corresponding contri-
bution in the case of two metallic plates [4,6,7]. In analogy
with this last configuration, the polaritonic Casimir energy
has the interesting property of exhibiting a maximum at a
distance which for graphene scales as the inverse of the band
gap energy. Consequently, the polaritonic force changes sign
for L ≈ 37h̄c/�, being attractive at shorter separations and
becoming repulsive at larger distances. Nonetheless, in our
system the total Casimir force remains attractive throughout.
However, both the value of the band gap and the behavior
of surface polaritons can be modified. For instance, one
can apply (additional) strain or consider substrate deposition
[34–37]. In-plane heterostructuring [48] and/or other types
of nanostructuring, such as etching of holes in the graphene
layers [49], can also serve this purposes.

In summary, our results show that, in the technologically
interesting limit of sufficiently small separations (e.g., van der
Waals solids), graphene’s surface resonances can behave in
a quite unusual way relative to the analogous situation for
ordinary metals.
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APPENDIX: THE IMPACT OF GRAPHENE’S
OPTOELECTRONIC PROPERTIES ON

THE CASIMIR ENERGY

As explained in the main text, in order to investigate
the Casimir energy between two parallel graphene sheets,
it is convenient to use the function η(α, v, λ), which com-
pares the Casimir energy with the energy between two
perfectly reflecting surfaces. With the change in variable
ξ̃ = 2λξλ�/c and k̃ = 2λkλ�, we may write the reflection
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coefficients as

rTE(iξ̃ , k̃) = − 2λαϕ
(

ρ̃

2λ

)
κ̃ + 2λαϕ

(
ρ̃

2λ

) , (A1a)

rTM(iξ̃ , k̃) = 2λακ̃ϕ
(

ρ̃

2λ

)
2λακ̃ϕ

(
ρ̃

2λ

) + ρ̃2
, (A1b)

where κ̃ =
√

k̃2 + ξ̃ 2, ρ̃ =
√

ξ̃ 2 + v2k̃2 and

ϕ(x) ≡ −ψ (ix) =
[

1 +
(

x − 1

x

)
arctan (x)

]
. (A2)

In this case, the function η(α, v, λ) can be written as follows:

η(α, v, λ) = − 45

2π4

∫ ∞

0
d ξ̃

∫ ∞

0
dk̃ k̃

×
∑

σ

ln
[
1 − r2

σ (iξ̃ , k̃)|λ→0e−κ̃
]
. (A3)

Due to the exponential in the integrand the dominant contri-
butions arise for 1 � κ̃ > ρ̃.

In the limit λ → 0 we can therefore consider the limit
ϕ(x) ≈ xπ/2 that is obtained for x → ∞. In this case, the
resulting expressions for the reflection coefficients are the
same as those that are obtained for the limit � → 0,

rTE(iξ̃ , k̃) ≈ − α π
2 ρ̃

κ̃ + α π
2 ρ̃

, rTM(iξ̃ , k̃) ≈ ακ̃ π
2

ακ̃ π
2 + ρ̃

. (A4)

As a consequence, the function η(α, v, λ) does not depend
on λ. The above expressions also show that, in this limit, the
TM contribution is larger than the TE contribution. In order to
obtain an analytically tractable expression, we introduce polar
coordinates in the ξ̃ -k̃ plane, ξ̃ = h sin[φ] and k̃ = h cos[φ],
and simplify the integration over the angle through the change
in variable x = sin φ. The integral can then be solved analyt-

ically but features rather lengthy expressions, the full form of
which we do not want to give here. We have

η(α, v, 0) ≈ 45

π4
[gTE(α, v) + gTM(α, v)], (A5)

where

gTE(α, v) =
∫ 1

0
dx

(
απ
2

√
x2(1 − v2) + v2

1 + απ
2

√
x2(1 − v2) + v2

)2

(A6)

and

gTM(α, v) =
∫ 1

0
dx

(
1

1 + 2
απ

√
x2(1 − v2) + v2

)2

. (A7)

Further, we observe that for very small α, we can Taylor
expand the expression

η(α, v, 0)
α�1≈ 45

4π2
α2

⎛
⎝1

3
(2v2 + 1) +

arctan
(√

1−v2

v2

)
√

v2(1 − v2)

⎞
⎠
(A8)

and obtain a scaling η ∝ α2.
For λ � 1, we can use the approximation ϕ(x) ≈ 4x2/3

valid for x � 1. The reflection coefficients then become

rTE(iξ̃ , k̃) ≈ −2

3

α

λ

ρ̃2

κ̃
, rTM(iξ̃ , k̃) ≈ 2

3

α

λ
κ̃. (A9)

Like in the previous case, we consequently have

η(α, v, λ)
λ�1≈ α2

λ2

10

π4

∫ ∞

0
d ξ̃

∫ ∞

0
dk̃ k̃

[
κ̃2 − ρ̃4

κ̃2

]
e−κ̃

= 240α2

π4λ2

[
1 + 1

15
(3 + 4v2 + 3v4)

]
. (A10)
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