
Plasmonischer Beitrag zur Casimir-Kraft zwischen
zwei Lagen Graphen

zur Erlangung des akademischen Grades
Bachelor of Science

(B.Sc.)
im Fach Physik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

Institut für Physik
Humboldt-Universität zu Berlin

von
Christoph Heiko Egerland

geboren am 14.03.1996 in Plauen

Gutachter:

1. Prof. Dr. Kurt Busch
2. Prof. Dr. Oliver Benson
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Übersicht

Diese Arbeit beschäftigt sich mit der Frage: “Welchen Einfluss haben plasmonische Moden
auf den Casimir Effekt in Graphen?”. Hierfür beschreiben wir zunächst Graphen als Struktur
mathematisch und untersuchen die Bandstruktur im Rahmen der Theorie stark gebundener
Elektronen. Wir finden heraus, dass die Energiedispersion nahe der Bandlücke linear ist und
folgern, dass die elektrooptischen Eigenschaften von Graphen im Bereich kleiner Energien (we-
nige eV) gut von einem (2+1)-dimensionalen Diracmodell beschrieben werden können. Aus
diesem Modell erhalten wir die Reflektionskoeffizienten von Graphen, die wir für die weiteren
Berechnungen benötigen. Des Weiteren vergleichen wir das Diracmodell mit dem Plasmamo-
dell, welches zur Beschreibung des Casimireffektes in Graphen in der Literatur oft benutzt
worde. Nach einem kurzen Abriss über die Geschichte der Theorie zum Casimireffekt führen
wir einen Ausdruck für die Casimirenergie zwischen zwei Lagen undotiertem Graphen bei null
Temperatur, aber mit einer nicht verschwindenden Bandlücke ein und vergleichen diesen mit
Ergebnissen für den Fall einer verschwindenden Bandlücke. Danach untersuchen wir die plas-
monischen Moden für eine einzelne Lage Graphen, wobei sich herausstellt, dass nur eine in der
sogenannten TE-Polarisation existiert. Im Falle von zwei zueinander parallelen Lagen Graphen
koppeln die individuellen plasmonischen Moden symmetrisch oder antisymmetrisch. Wir finden
heraus, dass die zu den Moden korrespondierenden Felder stets evaneszent, d.h. exponentiell
an der Oberfläche abklingend, sind. Um den Beitrag plasmonischer Moden zum Casimireffekt
zu bestimmen, führen wir die sogenannte plasmonische Energie ein, das heißt den Teil der
Casimir Energie der aus den plasmonischen Moden resultiert. Für den Grenzfall verschwin-
dender Abstände zwischen den beiden Metallplatten, wird die gesamte Casimirenergie beliebig
groß. Besonders interessant ist hierbei, dass aus der Beschreibung von Graphen im Plasmamo-
dell resultiert, dass die plasmonischen Moden für verschwindende Abstände ebenfalls beliebig
groß werden und damit den Casimireffekt dominieren. Innerhalb unserer Betrachtung ist dies
nicht zu bestätigen. Wir finden allerdings heraus, dass die plasmonische Energie für sehr kur-
ze Abstände konstant wird. Für den Grenzfall sehr großer Abstände erhalten wir das gleiche
Potenzgesetz, wie im Falle der Beschreibung Graphens mit dem Plasmamodell.
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Introduction

In the framework of quantum mechanics the Heisenberg uncertainty principle states, that we can
only measure at the same time position and momentum of a particle, within a fundamentally
irreducible uncertainty. In quantum field theory the uncertainty principle manifests itself in
intrinsic fluctuations of the fields, which have helped describe a lot of physical effects, such
as the Lamb shift and the Hawking radiation. Although occuring at the microscopic scale,
quantum fluctuations can lead to macroscopic effects, such as the Casimir force.
In this phenomenon two uncharged non-magnetic parallel plates, placed in the quantum vac-
uum, experience an attracting force. Usually negligible in everyday life, the Casimir force
becomes very important if the two bodies are close to each other, i.e. with a distance in the
micron or submicron regime. This occures often in nanotechnologies, for example in a variety of
systems called microelectromechanical systems (MEMS), which are microscopic devices made
of movable components that are just some microns in size. They are already used as, e.g. iner-
tial sensors in consumer electronics [1]. The Casimir force causes sticking between the MEMS’
movable parts, but also promises to be used as a method of control. Beyond its application in
MEMS, it is generally interesting to investigate the Casimir force in technologically relevant
mechanical, electrical or optical systems. A favorable material, which, since its experimental
isolation in 2004 [2], is of most interest to such devices is graphene. As the first truly two-
dimensional material, graphene inhibits exotic features, such as a higher thermal conductivity
than silver, whilst also being stronger than steel. In the literature, the optical properties of
graphene have been studied using different models as, for example, the so called plasma model,
where one describes the charge carriers in the layer as an incompressible two-dimensional elec-
tronic fluid. However, it has recently been shown that the plasma model predicts a too large
magnitude of the Casimir force in graphene, whereas another model, the so called Dirac model,
is in better agreement with the experimental data [3]. Other investigations on the Casimir
effect, for the configuration of two parallel metal plates, have shown, that collective movements
of charge carriers at the surface of the material, the so called surface plasmon polaritons, are of
great importance for determining the Casimir force at small distances, i.e. where the attraction
becomes largest [4]. Work on two two-dimensional plasma sheets have shown the same result,
namely that surface plasmons dominate the Casimir interaction at small separations. Since this
can be interpreted as a result for two interacting graphene layers, it is interesting to wonder
whether this still holds or, in general, what happens in the case of the Dirac model, which seems
to describe the Casimir interaction in graphene more truthfully. This issue is at the center of
the present work.

We begin in Chapter 1 by introducing graphene mathematically and calculate its band structure
using a tight-binding model. The Dirac model of graphene is then introduced, along with
arguments describing its advantages with respect to the plasma model. We proceed in Chapter 2
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Introduction

by describing the derivation of the Casimir energy between two perfectly reflecting parallel
plates, given by H.B.G. Casimir in 1948. We then show its generalization to dielectric materials
and nonzero temperatures as proposed by Lifshitz in 1955. The Casimir energy for two graphene
layers described by the Dirac model is calculated and compared to results found in the literature.
In Chapter 3 we calculate the surface plasmons’ dispersion relations for a single layer and two
interacting layers of graphene and discuss their asymptotic expressions and their behaviour, in
comparison to the results found for two metal plates. In Chapter 4 we calculate the plasmonic
energy, which serves as a measure for the influence of plasmons in the Casimir effect. We
evaluate the asymptotes in the limits of small and large separations between the graphene
layers and compare the results to expressions found in the case of two interacting plasma
sheets. Chapter 5 serves as a summary of our results.
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1 Chapter 1

Graphene

We introduce graphene as a two dimensional material and talk about its crystal structure and the
resulting electronic properties, which we study in a tight-binding model. Within this framework
we find a linear dispersion at the Dirac points, which enables us to study the optical properties
of graphene via a (2+1)-dimensional Dirac model. As an overall result, we obtain the reflection
coefficients.

1.1 Crystal Structure

Graphene can be described as a two-dimensional material that consists of carbon atoms ar-
ranged in a honeycomb crystal structure. More precisely, it is described as a hexagonal lattice
with a two atom basis, which we call A and B in the following. For a comprehensive review see
Ref. [5], whose notation we adopt for the present and following section.

Figure 1.1: Crystal structure of graphene with prim-
itive lattice vectors, grey shaded area de-
notes a unit cell [5].

We choose the z axis to be perpendicular to
the graphene sheet, which is assumed to lay
in the x-y-plane. The primitive lattice vectors
between two unit cells are given by

a1 =
a

2

(
1,
√

3
)

a2 =
a

2

(
1,−
√

3
)
. (1.1)

Where a = 2.46 Å is the lattice constant. The
distance between two carbon atoms, however,
is given by aCC = a/

√
3 = 1.42 Å. The lattice

described above is not a Bravais lattice, since
it is not possible to connect A and B with a
lattice vector R = n1a1 +n2a2, where n1 and
n2 are integers. On the other hand, we notice
that the lattice only containing the A (or B)
atomic positions is indeed a Bravais lattice, i.e. a hexagonal lattice, which we call A sublattice
(or B sublattice). Each carbon atom has four valence electrons, one occupying the 2s orbital,
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1 Graphene

the remaining three occupying the 2px, 2py and 2pz orbital. Similar to graphite the s, px and
py orbitals are hybridized, forming three sp2 orbitals that lie in the graphene plane and span
an angle of 120◦ between each other. The remaining 2pz orbital rests perpendicular to the
plane. It is this orbital that forms the bond between graphene layers in graphite, but since we
examine monolayer graphene it remains unbound.

1.2 Tight-Binding Model

We calculate the band structure of graphene, in order to study its electrooptical properties,
by applying the tight-binding model. In the general case, we observe a system that consists
of N unit cells, each containing n atomic orbitals, which we call φj (j = 1 ... n). Since we
examine a periodic structure, we may introduce a Bloch wave function Φj that describes the
time evolution of an atomic orbital in not just one unit cell, but our whole solid, i.e. in all N
unit cells. It depends on the position r and the wave vector k of the electron, Rji denotes the
position of the jth orbital electron in the ith unit cell. It reads

Φj

(
k, r
)

=
1√
N

N∑
i=1

eikRjiφj

(
r−Rji

)
. (1.2)

The electronic wavefunction describing the whole electronic system is a linear superposition of
all the distinct orbital wave functions (with complex coefficients cjl):

Ψj

(
k, r
)

=
n∑
l=1

cjl
(
k
)

Φl

(
k, r
)
. (1.3)

The energy of the jth band is then given by

Ej
(
k
)

=
〈Ψj |H|Ψj〉
〈Ψj |Ψj〉

=

∑n
i,l c
∗
jicjl〈Φi|H|Φl〉∑n

i,l c
∗
jicjl〈Φi|Φl〉

, (1.4)

where we introduce the matrix elements Hij = 〈Φi|H|Φj〉 and Sij = 〈Φj |Φj〉. H denotes the
Hamiltonian of our system and c∗ji denotes the complex conjugate of cji. We minimize the
energy with respect to the coefficients, which leads to the following equation:

∂Ej
∂c∗jm

= 0⇒
n∑
l=1

Hmlcjl = Ej

n∑
l=1

Smlcjl. (1.5)

We rewrite Eq. (1.5) in the form

det
(
H − EjS

)
= 0, (1.6)

where we introduced

H =


H11 . . . H1n

...
. . .

...
Hn1 . . . Hnn

 , S =


S11 . . . S1n

...
. . .

...
Sn1 . . . Snn

 . (1.7)

2



1.2 Tight-Binding Model

The matrix H is known as the transfer integral matrix, whereas the matrix S is known as the
overlap integral matrix. Solving Eq. (1.6) yields the band structure, i.e. expressions for the
energies Ej in terms of the wavevector k.

In order to describe graphene with the tight-binding model, we have to set up two Bloch
waves, one for each of the hexagonal sublattices. Furthermore each of these waves contains
only one orbital, the 2pz orbital. If we only take next neighbour coupling into account, the
transfer- and overlap integral are given by [5]

H =

(
ε2p −γ0f(k)

−γ0f
∗(k) ε2p

)
, S =

(
1 −s0f(k)

−s0f
∗(k) 1

)
, (1.8)

where the function f(k) describes nearest neighbour hopping, along with the nearest neighbour
hopping parameter γ0 and the nearest neighbour overlap parameter s0. ε2p denotes the energy
of the 2pz orbital.

Figure 1.2: Band structure E(k) with parameter values ε2p = 0, γ0 = 3.033 eV and s0 = 0.129 [5]. Γ
denotes the center of the Brillouin zone. The valence and conducting band touch at the so
called K points, two of them denoted by K+ and K−.

The reader might consider Ref. [5] for the definition of these quantities. It is, however, worth
noting that the value of these parameters can not be found within the tight-binding model.
We have to use another approach like density-functional theory or find the parameters from
comparison with experiments. In any case the energy found reads

E± =
ε2p ± γ0|f(k)|
1∓ s0|f(k)|

. (1.9)

We call E+ the conduction band and E− the valence band. The band structure in the vicinity
of the first Brillouin zone has been plotted in Fig. 1.2. Two of the corners of the Brillouin zone
have been denoted K+, K− respectively and the black line corresponds to ε2p, which in this
case is set to zero. We can see that the bands touch at the zero energy, leaving no band gap.
However, it has been shown in literature that various techniques can be applied to induce a
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1 Graphene

band gap in graphene, such as placing it above a specific substrate [6]. In Ref. [7] a variety of
those findings were concerned, resulting in a range limiting the band gap to

∆ ≈ 5− 50 meV. (1.10)

On account of this, we may examine graphene inhibiting a nonzero band gap for the following
analysis. As a last point, we note that the relation E(k) is linear in the vicinity of the K points.

1.3 Electrooptical Properties

For a linear dispersion, Ref. [5] finds that the Hamiltonian becomes Dirac-like. We therefore
assume for all energies a linear dispersion, enabling us to describe graphenes electrooptical
response within a (2+1) Dirac model. It depicts the charge carriers in graphene as fermionic
quasiparticles moving at the “material speed of light”, which is the Fermi velocity of graphene
vF ≈ 1

300c (c being the vacuum speed of light). From Section 1.2 we note that the assumption
of a linear dispersion only holds for low energies, i.e. for energies in the vacinity of the touching
points of the bands. The model is then carried out within a quantum field theoretical calcu-
lation, where the so called polarization tensor is coupled to the electromagnetic field, hence
giving us the reflection coefficients for graphene. It is a rather involved calculation. The reader
might consider Refs. [8–10] for more detail. It is convenient to choose a polarization relative
to our system, i.e. where the electric field is parallel to the graphene sheet (TE) or where the
magnetic field is parallel to the sheet (TM). The reflections coefficients read

rTM =
κΠ00

κΠ00 + 2k2
, rTE =

k2Πtr − κ2Π00

k2
(
Πtr + 2κ

)
− κ2Π00

, (1.11)

where k =
√
k2
x + k2

y is the absolute value of the in-plane wavevector, ω is the frequency and

κ =
√
k2 − ω2/c2 = −ikz is connected to the wavevector component perpendicular to the plane.

For physical reasons, we consider the definition of the square root, for which Im[κ] < 0 and note
that Re[κ] ≥ 0. Π is the polarization tensor, where Π00 denotes the “00” entry and Πtr denotes
the trace of the tensor. The polarization tensor is a function of three system parameters: The
first one is the temperature T of the system, the second one is the chemical potential µ of the
graphene layer, the third one is the band gap ∆ of graphene. The latter two represent features
that a graphene layer reveals, such as doping (µ 6= 0) or a non-zero band gap (∆ 6= 0). For
arbitrary values of these parameters, where the model still holds, the tensor entries have quite
long expressions, the reader might find them in Refs. [8–10]. Here we restrict ourselves to the
case of an undoped layer of graphene µ = 0 at zero temperature T = 0, but with a non-zero
band gap ∆ 6= 0. For these assumptions the tensor entries have the following form:

Π00 = α
k2

κ2
F

Φ

(
κF
k∆

)
, Πtr = α

κ2 + κ2
F

κ2
F

Φ

(
κF
k∆

)
. (1.12)

We introduced κF =

√
v2
F
c2
k2 − ω2

c2
= −ipF , α = 1

137 the fine structure constant and the function
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1.3 Electrooptical Properties

Φ

(
κF
k∆

)
= 2k∆

1 +

(
κF
k∆
− k∆

κF

)
arctan

(
κF
k∆

)
= 2k∆

1−

(
pF
k∆

+
k∆

pF

)
arctanh

(
pF
k∆

) .

︸ ︷︷ ︸
:=−ψ

(
pF
k∆

)
(1.13)

In the following, it is convenient to work with the dimensionless parameters vF /c = v and
pF /k∆ = p. The function Φ is real and negative for any value of 0 < pF /k∆ < 1. The
constraint that pF < k∆ is related to no pair creation occuring in the graphene sheets. The
expressions of the reflection coefficients also provide us with a set of unit scales for our system,
as a function of k∆:

k∆ =
2∆

~c
, λ∆ =

1

k∆
, (1.14)

where ~ is the reduced Planck constant. k∆ has the unit of a wavevector and hence its in-
verse λ∆ will serve as the characteristic length of our system, relative to which we call lengths
small or large respectively. For the values of the band gap given in Eq. (1.10) we see that
λ∆ ≈ 2− 20µm.

We want to end this chapter by stressing the importance of the model with which we describe
graphene. It determines the reflection coefficients and therefore influences the Casimir energy,
as we will see in Eq. (2.9). An alternative to the Dirac model lies in the possibility to describe
the charge carriers in graphene as an incompressible fluid, which is confined to a two dimensional
surface. This model is called plasma model and has been applied to a variety of calculations
regarding the Casimir effect [11, 12]. However, in Ref. [13] it was shown that, for a certain
experimental setup, the plasma model predicts larger magnitudes of the Casimir energy, than
the Dirac model does. In Ref. [3] the two models were compared with measurements performed
in Ref. [14], with the result that “[...] the theoretical predictions of the plasma model are
excluded by the measurement data at a 99% confidence level over a wide region of separations
[...]”[3]. The same set of data was shown to be in very good agreement with predictions made
using the Dirac model [15]. We therefore conclude that the Dirac model of graphene provides
a suitable theoretical description of the Casimir effect within the regime of low energies and
justifies its use in the present work.
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2 Chapter 2

Casimir Energy

In the beginning of this chapter we present a short overview of the Casimir effect, from its
original proposal to its expansion for real materials at nonzero temperatures. In the second part
we calculate the Casimir energy of two undoped graphene layers with a nonzero band gap at
zero temperature and compare the result to the case of a vanishing band gap.

The Casimir effect is a quantum phenomena where, in its original formulation by H.B.G.
Casimir in 1948 [16], two uncharged and perfectly conducting metal plates parallel to each
other experience an attracting force obeying

FCas
A

= − ~cπ2

240L4
. (2.1)

Here, A is the area of the plates and L is the separation distance. The effect has been confirmed
by experiment several times and has inspired a whole field in the physical research known as
Casimir physics [17]. A brief description of Casimir’s calculation is presented below. The
system we consider consists of two parallel and perfectly conducting metallic plates with side
length d and separation distance L as shown in Figure 2.1. Possible vibrations in this cavity
have the frequencies

ωnxnynz = c
√
k2
x + k2

y + k2
z = c

√
π2

d2
n2
x +

π2

d2
n2
y +

π2

L2
n2
z, (2.2)

where nx, ny and nz are integers. We now associate every mode in the cavity with a harmonic
oscillator in its ground state and perform a sum over all modes

E(L) =
∑

nxnynz

~
2
ωnxnynz . (2.3)

By assuming d� L we can justify that the sum over nx and ny becomes an integral, since kx
and ky become continous. We note that we have to multiply E(L) with two, since there are

two possible polarizations. With x =
√
k2
x + k2

y and A = d2 we obtain
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2 Casimir Energy

Figure 2.1: Cavity for the Casimir effect.
The side length of the plates
is denoted by d, L denotes
their separation.

(the zero at the sum denotes that the zero term has to
be multiplied by 1

2 , since there is only one polarization
if one n is zero)

E(L) =
~cA
2π

∞∑
n=(0)1

∫ ∞
0

xdx

√
x2 +

π2

L2
n2. (2.4)

We note that this energy is infinite and now substract
the infinite separation quantity ECas = E(L)−E(L→
∞) from it. In the limit L → ∞, kz also becomes
continous. In order to extract the correct limit we have
to introduce a regularization, which in this case is a
cut-off function

f

(
k

km

)
=

1 k � km

0 k
km
→∞

. (2.5)

The idea behind it is, that every metal becomes trans-
parent at high enough frequencies, so the function cuts away the parts laying above a certain
cut-off frequency. A further substitution (x2 = π2

L2u) then leads to

ECas =
~cAπ2

4L3

 ∞∑
n=(0)1

F (n)−
∫ ∞

0
F (n)dn

 , F (n) =

∫ ∞
0

√
u+ n2f

(
π
√
u+ n2

Lkm

)
du.

(2.6)
We then use the Euler-Maclaurin formula and obtain

ECas
A

= − ~cπ2

720L3
. (2.7)

The resulting force is attractive and is calculated by taking the negative derivative of the energy
with respect to L

FCas
A

= − d

dL

ECas
A

= − ~cπ2

240L4
. (2.8)

Furthermore, we want to present an argument that becomes particularly interesting for the
physical intuition of the effect. The very ground of Casimir’s calculation is that he associates
every cavity mode with a harmonic oscillator at ground state. He then sums over all the ground-
state energies at a finite distance and substracts the sum of those at infinitely separated plates.
In other words, the Casimir effect can be understood as a geometrical phenomenon, where
the presence of boundary conditions, i.e. perfectly conducting plates in this case, modifies the
ground-state of the vacuum in a way that it induces a macroscopic effect.
Naturally physicists did not stop after the initial calculation and it was for Lifshitz, who

8



expanded the theory for dielectric materials and also nonzero temperatures [18]. His approach
was more profound than the one Casimir took. He calculated the average of the Maxwell stress
tensor inside the cavity, yielding the so called Lifshitz formula [9, 10]

ECas(L, T ) =
kBTA

4π

∞∑
n=(0)1

∫ ∞
0

kdk

{
ln
[
1− r2

TM (iξn, k)e−2κL
]

+ ln
[
1− r2

TE(iξn, k)e−2κL
]}

.

(2.9)
Here iξn = 2πkBT

~ n are the Matsubara frequencies. The (0) at the sum denotes that we must
multiply the n = 0 term by 1

2 . The temperature appears as a linear prefactor but also in
the Matsubara frequencies. The influence of the material is contained through the reflection
coefficients rTE and rTM .

We now want to adjust Eq. (2.9) to our configuration. First we set T = 0, so the Matsubara
frequencies become continues changing the sum over n to an integral

ECas(L) =
~A

16π2

∫ ∞
0

dξ

∫ ∞
0

kdk

{
ln
[
1− r2

TM (iξ, k)e−2κL
]

+ ln
[
1− r2

TE(iξ, k)e−2κL
]}

.

(2.10)
In order to study the behavior of the Casimir energy in terms of the separation distance between
the plates, we introduce dimensionless units following the notation of [10].

10−10

100

1010

10−5 10−4 10−3 10−2 10−1 100 101 102

∝ 1/L3

|E
C
a
s
/E

N
|

L/λ∆

Figure 2.2: Casimir Energy of graphene normalized to EN =
~ck3

∆A

4π
. The (red) dashed line is the

expression found in Ref. [10] for a vanishing band gap. In our case it serves as an asymptote
for L→ 0.

With y = 2Lκ and ζ = ξL/c, we obtain

ECas(L) =
~cA

32π2L3

∫ ∞
0

ydy

∫ y

0
dζ

{
ln
[
1− r2

TM (iζ, y)e−y
]

+ ln
[
1− r2

TE(iζ, y)e−y
]}

. (2.11)

In Ref. [10] it is examined how the Casimir energy acts in the case of a vanishing band gap
∆ = 0. There the reflection coefficients do not depend on the separation width L and the

9



2 Casimir Energy

integral in Eq. (2.11) becomes a numerical constant C = 0.02101. The Casimir energy can then
be written as

ECas(L) = − ~cA
32π2L3

C. (2.12)

In our case, however, a non-zero band gap exists and in the new variables the reflection co-
efficients depend on the separation width via the dimensionless length λ = L/λ∆. We note,
however, that for L� λ∆ the reflection coefficients take the same form as in the event of a zero
band gap ∆ = 0. Therefore, as can be seen in Fig. 2.2, we obtain the same behaviour of the
Casimir energy for graphene sheets with a vanishing and a non-vanishing band gap in the limit
L → 0. Furthermore we note that there is no change in the power law of the Casimir energy
as a function of the distance L for ∆ = 0, similar to the Casimir energy calculated for per-
fectly conducting plates. For ∆ 6= 0, however, we can see in Fig. 2.2 that the power law changes.
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3 Chapter 3

Plasmonic Modes Of Graphene

In this chapter we use the reflection coefficients obtained in Chapter 1 to calculate the dispersion
relation of the plasmonic modes for both a single layer of graphene and two parallel sheets
of graphene. We calculate asymptotic behaviours and compare our results to the literature.
The expressions we find will become important for the calculation of the plasmonic part of the
Casimir energy in Chapter 4.

3.1 Single Layer Of Graphene

Plasmonic excitations in a material can be described as resonances of its reflection coefficients.
In the present thesis we employed the Dirac model described in Chapter 1 to obtain them. For
T = 0 and µ = 0 the reflection coefficients read

rTM =
ακΦ(p)

ακΦ(p)− 2p2
F

, rTE = − αΦ(p)

αΦ(p) + 2κ
. (3.1)

To find the resonances, we have to determine the poles of the reflection coefficients

1

r
= 0⇔

αΦ + 2κ = 0 TE

ακΦ− 2p2
F = 0 TM

. (3.2)

If we regard Φ ∈ R− and pF ∈ (0, k∆) as fixed (see discussion around Eq. (1.13)), the equations

(3.2) can be expressed as a function of κ. Reminding the definition of κ =
√
k2 − ω2

c2
, possible

solutions can be found in the following three domains:

• For ω > ck, κ is complex with a negative imaginary part and a vanishing real part
(κ ∈ −iR+). In this regime the fields propagate, hence we call this domain the propagating
region

• If ω < ck, κ is a real and positive number (κ ∈ R+). The fields associated with modes in
this region do exponentially decay at the surface, thus we call this domain the evanescent
region

11



3 Plasmonic Modes Of Graphene

• The third domain of κ is where ω = ck, such that κ = 0. This we call the light cone, it is
the dispersion relation in vacuum.

Now we want to see whether we can find a solution for κ in any of the above regions. Recalling
the equation we have to solve for the TM polarization ακΦ− 2p2

F = 0 and Φ ∈ R−, pF > 0 we
see that the only possible solution would be κ ∈ R−, which does not match any of the regions
mentioned above. Therefore, within our framework, graphene does not exhibit plasmonic exci-
tations in the TM polarization. However there exist solutions for the TE polarization, i.e. one
in the evanescent sector. This can be seen by rewriting Eq. (3.2) as

2κ+ αΦ(p) = 0⇔ κ = −α
2

Φ(p) = αk∆ψ(p). (3.3)

Unfortunately this equation can’t easily (if all) be brought explicitely into the form ω = ω(k).
One way to circumcise this problem is to express ω and k as functions of a common parameter.

Recalling that pk∆ =
√

ω2

c2
− v2k2 and κ =

√
k2 − ω2

c2
, we conclude that p can suffice as such a

parameter. Furthermore we note that it is also possible to introduce κ as a parameter, which
we will show in Section 3.3. For now, we want to find the parametric expressions with the
parameter p. We have to use the definitions of p and κ to eliminate ω or k in Eq. (3.3). The
dispersion relation for the single layer TE plasmon of graphene then reads

k(p) =
k∆√

1− v2

√
p2 + α2ψ2(p)

ω(p) =
ck∆√
1− v2

√
p2 + α2v2ψ2(p)

Single Layer Plasmon Mode

(3.4a)

(3.4b)

The parametric expressions Eq. (3.4) are plotted in Fig. 3.1. We first notice that the mode
is defined for all real and positive frequencies and wavevectors, meaning that it doesn’t decay.
Because v < 1 we see that ω < ck, so the surface plasmon lies entirely in the evanescent
sector. For the physical values of v and α the mode basically looks like two crossing lines at
k = k∆/

√
1− v2 given by the pair creation threshhold frequency and the light cone. We plot

the quantities in Fig. 3.1 with different values of these parameters to show that the mode is
continous and differentiable for all k. The crossing lines mentioned will also serve as asymptotes
of the mode for small or large values of k.

For small k, i.e. k � k∆ we see that our parameter p has to be small since k and ω are
monotonousely increasing functions of p. We see that

ψ(p) =

(
p+

1

p

)
arctanh(p)− 1

p→0
≈ 4

3
p2. (3.5)

Therefore the second term under the root in Eq. (3.4) can be neglected and we obtain the
dispersion relation of the vacuum: ω(k) = ck. Conversely for large k, i.e. k � k∆ we see that,
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3.2 Two Layers Of Graphene

since again k and ω are monotonousely increasing functions of p , we have to have large values
of p. Reminding that 0 < p < 1, we see that we’re approaching the limiting value of p = 1. We
obtain the upper bound

pk∆ =

√
ω2

c2
− v2k2 p=1⇒ ωth(k) =

√
c2k2

∆ + v2
Fk

2, (3.6)

which for large values of k � k∆/v also gets linear ω(k) = vFk. We note that our results,
regarding the TE plasmon coincide with the ones found in Ref. [19]. It is noted there that
even though we assumed T = 0 and ∆ 6= 0 the plasmon found would survive the case of finite
temperatures and ∆ = 0.
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Figure 3.1: Single layer plasmonic mode. Dashed lines are the light cone and the threshhold frequency.
Different values of fine structure constant α are shown for better visibility, Left pane: vF =
1
2
c, Right pane: vF = 1

300
c.

3.2 Two Layers Of Graphene

Let us consider the case of two graphene layers parallel to each other. Each layer supports
a TE polarized surface plasmon. At a sufficiently large separation distance the layers do not
interact with each other and can be treated as if each layer were isolated. If we, however, bring
them ever closer, their individual modes couple in a symmetric (ω−) and antisymmetric (ω+)
way as illustrated in Fig. 3.2. The symmetric mode results in a binding force, whereas the
antisymmetric mode is anti-binding [4]. Mathematically the coupled modes are determined by

1− r2e−2κL = 0⇔ r = −σe−κL, (3.7)

where σ = 1 corresponds to the binding mode ω− and σ = −1 to the anti-binding mode ω+.
We may rewrite Eq. (3.7) to
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3 Plasmonic Modes Of Graphene

αψ(p) =


µ

1−e−µλ = µ
2

[
1 + coth

(
µλ
2

)]
= 1

λf+(µλ) σ = 1

µ
1+e−µλ

= µ
2

[
1 + tanh

(
µλ
2

)]
= 1

λf−(µλ) σ = −1
, (3.8)

where we introduce the dimensionless length λ = L/λ∆ and µ = κ/k∆. Similar to the case of
a single layer, we regard ψ ∈ R+ and p ∈ (0, 1) as fixed, so the Eqs. (3.8) can be expressed as
a function of µ. Possible, physical solutions lie in one of the three domains: propagating region
(µ ∈ −iR+), evanescent region (µ ∈ R+) or light cone (µ = 0).

Figure 3.2: Schematic visualization of the modes of two parallel slabs at infinite (left) and finite (right)
separation. For infinite separation each slab features a plasmonic mode (ω0) individually,
which couple in a symmetric (ω−) or antisymmetric fashion (ω+) [4].

We can see that in the propagating sector we may write µ = −ix, where x ∈ R+

R+ 3 αψ(p) =


− ix

2

[
1 + coth

(
− ixλ

2

)]
= − ix

2 + x
2 cot(xλ2 ) ∈ C

− ix
2

[
1 + tanh

(
− ixλ

2

)]
= − ix

2 −
x
2 tan(xλ2 ) ∈ C

. (3.9)

For x 6= 0 there is a non vanishing imaginary term on the right hand side of Eq. (3.9), so the
domain does not match the left hand side. Hence for both coupled modes there can not be any
part in the propagating region. Nonetheless there are solutions in the evanescent sector which
we obtain by choosing a parametric expression like in the single layer case. The idea is to find
an inverse for the function on the right hand side of Eq. (3.8) and operate it on both sides,
isolating µ(p). We rewrite Eq. (3.8) as

∓ λαψ(p)eλαψ(p) = λ(µ− αψ(p))eλ(µ−αψ(p)). (3.10)
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3.2 Two Layers Of Graphene

The inverse of xex is called the Lambert W function. For a real variable x it has two branches
denoted by 0 and −1, meaning that it is multivalued

x =

W0

(
xex
)

x ≥ −1

W−1

(
xex
)

x ≤ −1
. (3.11)

For our case this means that we have to inspect whether λ(µ − αψ(p)) ≥ −1. We insert the
right hand sides of Eq. (3.8) for αψ(p) and arrive at

h±(µ) := µ− µ

1∓ e−λµ
?
≥ − 1

λ
. (3.12)

Choosing a plus in the denominator this is trivially fulfilled, because µ > 0 and 1 + e−λµ > 1.
For a minus in the denominator, we use L’Hôpital’s rule

lim
µ→0

h−(µ) = lim
µ→0

(
µ− µ

1− e−λµ

)
= − 1

1 + λ
≥ − 1

λ
. (3.13)

Since h−(µ) is a monotonous increasing function the condition is also true for the minus case.
We can therefore invert the right side of Eq. (3.10) and obtain

µ = f±(p, λ) = αψ(p)︸ ︷︷ ︸
=:f0(p)

+
1

λ
W0

(
±αλψ(p)e−αλψ(p)

)
︸ ︷︷ ︸

=:g±(p,λ)

. (3.14)

With that we deduce the parametric expressions with the definitions of µk∆ =
√
k2 − ω2

c2
and

pk∆ =
√

ω2

c2
− v2k2

k±(p) =
k∆√

1− v2

√
p2 + f±(p)2

ω±(p) =
ck∆√
1− v2

√
p2 + v2f±(p)2

Coupled Plasmon Modes

(3.15a)

(3.15b)

We can see that they are formally similar to the single layer case. Here, however, the functions
f± = f0 + g± under the square root have a single layer part (f0) and a part specific to the
coupling (g±). The expressions in Eq. (3.15) are plotted in Fig. 3.3. We see (analogously to
the single layer case) that the coupled modes are defined for all real and positive frequencies
and wavevectors, not including any decay. The symmetrically coupled mode is purely evanes-
cent, whereas the antisymmetrically coupled mode features a segment that is evanescent and a
segment that coincides with the light cone. Contrary to the single layer mode, the antisymmet-
rically coupled mode is not differentiable at the point where these two segments meet. From
a mathematical point of view this behaviour occures because of the argument in the Lambert
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3 Plasmonic Modes Of Graphene

W function. We see that in the plus case the argument basically has the form of Eq. (3.11).
Indeed the transition can be found at

αλψ(p†) = 1⇔ p† = ψ−1

(
1

αλ

)
. (3.16)

This behavior can be interpreted in terms of a threshhold frequency ω† = ck∆√
1−v2

√
p2
† + v2f±(p†)2

that has to be reached to give rise to an antisymmetric plasmon. Interestingly the antisym-
metric coupling never results in a propagating field.
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Figure 3.3: Coupled plasmonic modes for different separation distances, where we set α = v = 1/2 for
better visibility. Dashed lines are the light cone and the treshhold frequency.

For small separations L� λ∆/αψ(p) we can use the Taylor series of the Lambert W function

W0(x) ≈ x− x2 +
3

2
x3 +O(x4) (3.17)

and therefore obtain

g±(p, λ→ 0) = ±αψ(p)∓ α2λψ2(p) +O(λ3). (3.18)

Thus, the short distance asymptote of the minus mode becomes

k−(p) =
k∆√

1− v2

√
p2 + 4α2ψ2(p), (3.19a)

ω−(p) =
ck∆√
1− v2

√
p2 + 4v2α2ψ2(p). (3.19b)

Because of Eq. (3.11) the plus mode will always approach the light cone for L� λ∆/αψ(p). If
L > λ∆/αψ(p), we can see that p has to get large to still justify the case of small L. For small
separations the plus mode therefore approaches the asymptotes of the single layer plasmon for
small/large wavevector respectively
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3.3 Parametrization

ω+(k) =


ck k ≤ k∆√

1−v2√
c2k2

∆ + v2
Fk

2 k ≥ k∆√
1−v2

. (3.20)

For large separations L → ∞ we can see that the coupling specific part g± can be written in
the following form (with x = αλψ(p))

lim
x→∞

g±(x) = lim
x→∞

αψ(p)
1

x
W0

(
±xe−x

)
= αψ(p) lim

x→∞

W0

(
±xe−x

)
1 +W0

(
±xe−x

) (1− 1

x

)
= 0, (3.21)

where we used L’Hôpital’s rule and W0(0) = 0. Therefore, both modes tend to the single
layer mode for very large separations. This is exactly what we expected, because for infinite
separations the modes of the two plates decouple, leaving two single layer interfaces.

3.3 Parametrization

In the previous section, we found parametric expressions for the coupled plasmons with the
parameter p. We therefore took the inverse of the right-hand side of Eq. (3.8) to isolate µ
and then used the connection of p and µ with k and ω, obtaining the parametric expressions.
We might as well could have taken the inverse of the left side, isolating p and using µ as a

parameter. Taking the inverse of ψ and again using pk∆ =
√

ω2

c2
− v2k2 we get

k±(µ, λ) = k∆

√√√√µ2 + ψ−1

(
f±(µλ)

αλ

)2

, (3.22a)

ω±(µ, λ) = ck∆

√√√√v2µ2 + ψ−1

(
f±(µλ)

αλ

)2

. (3.22b)

There are some small disadvantages in choosing this parametrization instead of the one found
in the previous section. One is that the inverse functions can not be written in an analytical
form. Another one is that they do not automatically inhibit the analytical continuation to the
light cone as the p parametrisation does. We therefore have to “manually” continuate the plus
mode with the light cone. The modes described by these parametric expressions is of course the
same as already elucidated in Chapter 3. Naturally the parameter we choose must not change
the physics. It becomes useful to write p = tanh(q) with q ∈ R+ to get

ψ(p) = χ(q) =

(
tanh(q) +

1

tanh(q)

)
q − 1 = η(2q)− 1, (3.23)

where we defined η(x) = x coth(x) and note
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3 Plasmonic Modes Of Graphene

η(x . 1) ≈ 1 +
x2

3
+O

(
x3
)
, η(x > 1) ≈ x+O

(
e−2x

)
. (3.24)

Now we can write the inverse as:

ψ−1

(
f±(µλ)

αλ

)
= tanh

χ−1

[
f±(µλ)

αλ

] = tanh

1

2
η−1

[
1 +

f±(µλ)

αλ

] . (3.25)

This matryoschka-like nesting of functions will become useful in the next chapter, where we’ll
calculate asymptotes for the plasmonic energy.
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4 Chapter 4

Plasmonic Energy

In this chapter we investigate the contribution of plasmonic modes to the Casimir energy by
isolating the plasmonic part of the Casimir energy, which we call the plasmonic energy and
calculate asymptotes for the limit of very small and very large separations.

We introduced the Casimir energy in Chapter 2 as a sum over modes. From this point of view
one might divide this sum into parts including specific modes [4, 12]

ECas = Epl + Eph, (4.1)

where Epl contains the plasmonic modes and Eph contains the photonic modes. For observing
the contribution of plasmonic modes we isolate the obtained modes in a quantity we call the
plasmonic energy

Epl =
∑
k

[
~ω+

2
+

~ω−
2

]L
L→∞

, (4.2)

where ω+ and ω− are the (anti-)symmetrically coupled plasmonic modes we calculated in Sec-
tion 3.2. The limit L → ∞ may be evaluated by substracting two times the single layer
plasmonic mode, since in this limit the interfaces decouple, forming two non interacting layers
(see discussion in Section 3.2). We rewrite the sum as an integral

Epl =
~
2

∑
k

ω+ + ω− − 2ω0 (4.3)

=
~A
4π

∫ ∞
0

kdk(ω+ + ω− − 2ω0), (4.4)

where k is the radius of an in-plane wavevector with coordinates (kx, ky). We introduce dimen-
sionless units through K = k/k∆ and Ωi = ωi/ck∆ (i = +,−, 0) and obtain
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4 Plasmonic Energy

Epl = EN

∫ ∞
0

KdK(Ω+ + Ω− − 2Ω0)

Plasmonic Energy

(4.5)

The prefactor EN =
~ck3

∆A
4π has the unit of an energy and we use it as a normalization constant.

We now want to insert the parametric expressions found in Section 3.3, where we express K
and Ωi as functions of a parameter µ. This particular parametrization has the disadvantage,
that it does not feature the analytical continuation of the plus mode.
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Figure 4.1: Plasmonic Energy for physical values α = 1/137 and v = 1/300 as a function of the dimen-
sionless length λ = L/λ∆.

We have to write the integral over it like∫ ∞
0

KdKΩ+ =

∫ ∞
K†

KdKΩ+(µ, λ) +

∫ K†

0
K2dK, (4.6)

where K† is the value at which the propagating region changes to the light cone. We change
the integration variable to µ, obtaining

K2 = µ2 + Ω2 ⇒ KdK = µdµ+ ΩdΩ. (4.7)

The Eq. (4.5) then read

Epl/EN =
1

3

[
Ω3

+

]K→∞
K→K†

+
1

3

[
Ω3
− − 2Ω3

0

]K→∞
K→0

+

∫
Γ+,−,0

[
Ω+ + Ω− − 2Ω0

]
µdµ+

1

3
K3
† , (4.8)

where Γ+,−,0 is the integration path. The upper limits of the first two terms of the previous
expression cancel, since in this limit the modes tend to a common value (see discussion around
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Eq. (3.21)). For the lower limit we know that the zero and minus mode vanish, since they
are approaching the light cone. Thus we are left with the lower limit of the plus mode, which
cancels the last term in Eq. (4.8). The range of our parameter is µ ∈ R+ and determines the
integration paths, leading to

Epl/EN (λ) =

∫ ∞
0

[
Ω+(µ, λ) + Ω−(µ, λ)− 2Ω0(µ)

]
µdµ. (4.9)

Figure 4.1 shows a plot of Eq. (4.9), where we can see that the plasmonic energy monotonously
increases until a maximum at Lmax ≈ 74λ∆. It then decreases monotonously and approaches
zero for L → ∞. We will analyze these limits analytically below. First, it is interesting
to understand the physical meaning of our result. Since the Casimir force is the negative
derivative of the Casimir energy, we find the part of the force which plasmons cause in the
Casimir effect by observing the slope of the plasmonic energy. We see that up to Lmax the
contribution to the force, from the surface plasmon, is attractive. It then changes sign and
becomes repulsive for L > Lmax.
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Figure 4.2: Plasmonic Energy for various parameters. Left pane: Fixed value of v = 1/2, Right pane:
Fixed value of α = 1/2. The peak occures, because we plot the absolute value of Epl.

In Fig. 4.2 the plasmonic energy is plotted with different values of its parameters. We see that
the exact value of the dimensionless Fermi velocity v and the fine structure constant α does not
change the qualitative behaviour of the plasmonic energy, although it changes the magnitude
and the exact position of the maximum.

We now want to analytically analyze the asymptotic behaviour of the plasmonic energy for
small and large separations between the graphene sheets. It becomes useful to examine the
difference between the coupled and the uncoupled mode, which reads

ω±(µ, λ)− ω0(µ) =
ck∆√
1− v2


√√√√v2µ2 + ψ−1

(
f±(µλ)

αλ

)2

−

√√√√v2µ2 + ψ−1

(
f0(µλ)

αλ

)2

 .
(4.10)

The largest contribution of this expression occures at µ ≈ α, which can be checked by a plot.
Involving that v < 1 and α < 1 we see that the first term under the square root is negligible
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4 Plasmonic Energy

compared to the second. We then insert the inverse function as shown in Eq. (3.25). We
approximate η−1(x) ≈ x, so our intermediary result is

ω±(µ, λ)− ω0(µ) =
ck∆√
1− v2

tanh

1

2

(
1 +

f±(µλ)

αλ

)− tanh

1

2

(
1 +

f0(µλ)

αλ

)
 . (4.11)

At µ ≈ α we approximate tanh(x) ≈ 1− 2e−2x. Therefore, we get

ω±(µ, λ)− ω0(µ) =
2ck∆

e
√

1− v2

exp

[
−f0(µλ)

αλ

]
− exp

[
−f±(µλ)

αλ

] , (4.12)

where e is Euler’s number. For L� λ∆/α the argument of f0 and f± becomes very small. We
note that

f+(x→ 0) = f0(x) + 1− x

2
+
x2

12
+O(x3), f−(x→ 0) = f0(x)− x

2
+
x2

4
+O(x3). (4.13)

Recalling that f0(x) = x, we may write

ω±(µ, λ)− ω0(µ) =
2ck∆

e
√

1− v2
exp

[
−µ
α

]1− exp

[
f0(µλ)− f±(µλ)

αλ

] . (4.14)

Inserting this expression back into the plasmonic energy given by Eq. (4.5) we find

Epl/EN =
2

e
√

1− v2

∫ ∞
0

µdµ exp

[
−µ
α

]2− exp

 µ

2α

(
1− µλ

2

)− exp

 µ

2α

(
1− 2

µλ
− µλ

6

)


(4.15)
The integral has a rather long, but nonetheless analytical form. For L → 0 we can further
approximate it, so that the plasmonic energy becomes

Epl(L→ 0)/EN ≈
1

e
√

1− v2
(−4α2 + 48α3λ−O(λ2)). (4.16)

We see that, in this limit, the plasmonic energy approaches a constant, which can also be seen
in Fig. 4.3. We note that the asymptote slightly deviates from the full result. It is likely
that this occures because the approximation of the inverse function (η−1(x) ≈ x) requires
more care. This point will be further investigated in future work. As a comparison we note
the results found in Ref. [12]. There the Casimir interaction between two plasma sheets was
considered, which, generally speaking, could also be used as a model for describing graphene.
It was concluded, that the contibution to the Casimir energy stemming from surface plasmons
behaves for all distances like ∝ 1/L5/2, while the whole interaction behaves like ∝ 1/L3. Thus,
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in that framework it was concluded, that plasmons dominate the near separation limit. Within
our treatment however, we have shown, that if we describe graphene with the Dirac model,
the plasmonic contribution is negligible at small distances with respect to the total (diverging)
interaction.
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Figure 4.3: Plasmonic energy in different limits with asymptotes (red dashed) for the physical values
v = 1/300 and α = 1/137. Left pane: L→ 0, Right pane: L→ ∞

We now study the plasmonic energy at large distances, i.e. L → ∞ and again observe the
difference between the coupled and the uncoupled mode

ω±(µ, λ)− ω0(µ) =
ck∆√
1− v2


√√√√v2µ2 + ψ−1

(
f±(µλ)

αλ

)2

−

√√√√v2µ2 + ψ−1

(
f0(µλ)

αλ

)2

 .
(4.17)

Now the largest contributions arise from µ ≈ 1/λ and again we can see, that we can neglect the
first term in our square root. Furthermore we can approximate the η−1 function for arguments
around 1 with η−1(x) ≈

√
3(x− 1) and we also note for x ≈ 0: tanh(x) ≈ x. The expression

now reads

ω±(µ, λ)− ω0(µ) =

√
3ck∆

2
√

1− v2

√f±(µλ)

αλ
−
√
f0(µλ)

αλ

 . (4.18)

Inserting this into the plasmonic energy integral we obtain

Epl/EN =

√
3

4α(1− v2)

∫ ∞
0

µdµ


√√√√√µ

2

1 + tanh

(
µλ

2

)+

√√√√√µ

2

1 + coth

(
µλ

2

)− 2
√
µ

 .
(4.19)

We introduce the variable x = µλ and see that the plasmonic energy takes the form:

Epl/EN =

√
3

4α(1− v2)

C

λ5/2
(4.20)
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4 Plasmonic Energy

Where C is a constant defined by:

C =

∫ ∞
0

xdx


√√√√x

2

(
1 + tanh

(
x

2

))
+

√√√√x

2

(
1 + coth

(
x

2

))
− 2
√
x

 ≈ 0.2132 (4.21)

A plot of this asymptote can be seen in Fig. 4.3. We conclude that plasmons contribute to the
Casimir energy at large distance in a repulsive fashion, which is balanced out by the photonic
modes to recover the attractive behaviour of the whole Casimir force. Our results are similar
to those found for a plasma confined to a two dimensional surface in Ref. [12].
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5 Chapter 5

Summary

We introduced graphene theoretically and described its electrooptical behaviour in a (2+1)
Dirac model, where we outlined the differences compared to the plasma model. We then
calculated the Casimir energy for two undoped sheets of graphene at zero temperature with a
nonzero band gap. For small separation distances we recover the already found results for a
graphene system with a vanishing band gap [10] and for larger distances we observed a change
in the power law of the Casimir energy. We then proceeded by calculating the plasmonic
excitations in a single layer of graphene and found out that there only exists one in the TE
polarization. For two coupled layers the interaction gives rise to two surface plasmons, which
are characterized by an evanescent field. Using these results, we calculated the contribution of
the plasmonic modes to the Casimir energy. For small distances between the graphene layers,
the whole Casimir energy is negatively diverging, while we showed that the plasmonic Casimir
energy approaches a constant in this limit. We concluded that, in the Casimir interaction
between two graphene layers, plasmonic modes to not dominate the near separation limit,
contrary to what has been found in literature [12], where graphene has been described by the
plasma model. For large distances, however, we obtain the same power law as received from
the plasma model.
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